Abstract:
PURPOSE: A manufacturing method of mesoporous carbon including nitrogen with vapor deposition polymerization and application thereof as a heavy metal absorbent are provided to manufacture the mesoporous carbon including nitrogen without an additional injection process of a functional group. CONSTITUTION: A manufacturing method of mesoporous carbon including nitrogen includes the following steps: manufacturing a polymer - silica nanocomposite by injecting the polymer into a silica template with evaporation polymerization of monomer; manufacturing a carbon - silica nanocomposite with carbonization of the polymer - silica nanocomposite; and manufacturing mesoporous carbon by removing a silica mold from the carbon - silica nanocomposite.
Abstract:
본 발명은 표면에 계면활성제가 도입된 실리카와 이산화티타늄으로 이루어진 중공구조 나노입자를 포함한 전기유변유체의 제조방법에 관한 것으로, 계면활성제를 실리카-이산화티타늄 중공구조 나노입자의 표면에 도입한 후, 표면에 계면활성제가 도입된 실리카-이산화티타늄 중공구조 나노입자를 절연유체에 도입하여 분산시켜서 제조되는 표면에 계면활성제가 처리된 실리카-이산화티타늄 중공구조 나노입자를 포함한 전기유변유체를 제조하는 방법을 제공한다. 본 발명에 따르면, 도입된 계면활성제는 실리카/이산화티타늄 중공구조 나노입자와 절연유체의 상용성을 크게 향상시켜 실리카-이산화티타늄 중공구조 나노입자의 분산을 향상시킴으로써, 높은 안정성을 가지는 전기유변유체를 용이하게 제조할 수 있는 장점을 가진다. 더욱이, 본 발명에서 제조될 수 있는 계면활성제가 도입된 실리카-이산화티타늄 중공구조 나노입자를 포함한 전기유변유체는 절연유체와 나노입자가 이루는 표면적이 증가하게 되어 항복응력 또한 증가하는 장점을 가진다.
Abstract:
본 발명은 계면활성제가 도입된 실리카/이산화티타늄 코어-셀 나노입자를 포함한 전기유변유체의 제조방법에 관한 것으로, 계면활성제를 실리카/이산화티타늄코어-셀 나노입자의 표면에 도입한 후, 표면에 계면활성제가 도입된 실리카/이산화티타늄 코어-셀 나노입자를 절연유체에 도입하여 분산시켜서 제조되는 표면에 계면활성제가 처리된 실리카/이산화티타늄 코어-셀 나노입자를 포함한 전기유변유체를 제조하는 방법을 제공한다. 본 발명에 따르면, 도입된 계면활성제는 실리카/이산화티타늄 코어-셀 나노입자와 절연유체의 상용성을 크게 향상시켜 실리카/이산화티타늄 코어-셀 나노입자의 분산을 향상시킴으로써, 높은 안정성을 가지는 전기유변유체를 용이하게 제조할 수 있는 장점을 가진다. 더욱이, 본 발명에서 제조될 수 있는 계면활성제가 도입된 실리카/이산화티타늄 코어-셀 나노입자를 포함한 전기유변유체는 절연유체와 나노입자가 이루는 표면적이 증가하게 되어 항복응력 또한 증가하였다.
Abstract:
본 발명은 실리카-이산화티타늄 중공구조 나노입자를 포함한 전기유변유체의 제조방법에 관한 것으로, 유전상수가 높은 이산화티타늄을 역평행패어링 효과를 감소시키고, 전기장에 반응하는 계면을 증가시키기 위하여 실리카와 혼합하여 중공구조 입자의 외부벽을 이루게 한 실리카-이산화티타늄 중공구조 나노입자를 절연유체에 도입한 후, 분산시켜 전기유변현상이 효율적으로 나타나는 실리카-이산화티타늄 중공구조 나노입자를 포함한 전기유변유체를 제조하는 방법을 제공한다. 본 발명에 따르면, 실리카-이산화티타늄 중공구조 나노입자가 이산화티타늄과 실리카가 혼합된 외부벽을 가지고, 이로 인하여 많은 이산화티타늄과 실리카의 계면을 가지며, 상기 계면이 전기유변유체에 있어서 저해요소인 역평행패어링 효과를 감소시키고 분극성능을 향상시킴으로써, 높은 항복응력을 가지는 전기유변유체를 용이하게 제조할 수 있는 장점을 가진다. 더욱이, 본 발명에서 제조될 수 있는 실리카-이산화티타늄 중공구조 나노입자를 포함한 전기유변유체는 중공구조 나노입자의 함량, 나노입자의 크기, 이산화티타늄의 도입량에 따라서 항복응력의 용이한 조절이 가능하다.
Abstract:
PURPOSE: A producing method of electro rheological fluid containing silica/titania core-shell nanoparticles is provided to mass-produce the electro rheological fluid with simple producing processes. CONSTITUTION: A producing method of electro rheological fluid containing silica/titania core-shell nanoparticles comprises the following steps: drying the silica/titania core-shell nanoparticles using a vacuum oven; inserting the dried silica/titania core-shell nanoparticles into insulating fluid; and dispersing the silica/titania core-shell nanoparticles in the insulating fluid.
Abstract:
PURPOSE: A manufacturing method of silica-titania dioxide hollow structure nanoparticle is provided to manufacture simple and economic silica - titanium dioxide hollow structure nanoparticle by an ultrasonic wave induced etching-redeposition method without using a surfactant. CONSTITUTION: The manufacturing method of silica-titania dioxide hollow structure nanoparticle includes following steps.(i) A silica / titania dioxide core-shell nanoparticle is dispersed into an aqueous solution.(ii) A base is introduced to the core-shell nanoparticle aqueous solution. A basic solution is created.(iii) The ultrasonic wave is added to the basic core-shell nanoparticle aqueous solution. The hollow structure is induced.(iv) A centrifuge is used to collect the silica - titania dioxide hollow structure nanoparticle in the solution treated with the ultrasonic wave. An additive quantity of the silica - titania dioxide hollow structure nanoparticle and the base is 0.01-10 parts by weight compared to the aqueous solution 100.0. The ultrasonic wave treatment is carried out with an intensity of 10-500W for 30 second -300 minutes.
Abstract:
PURPOSE: A manufacturing method of silver halide/silver nanocomposite is provided to easily manufacture a simple and economic silver halide/silver nanocomposite through a dispersion-mediated precipitation reaction and a light-induced reduction by a use of a dispersion stabilizer. CONSTITUTION: The manufacturing method of silver halide/silver nanocomposite includes following steps.(a) The dispersing stabilizer is dissolved in an aqueous solution.(b) A silver nitrate is added to the aqueous solution, in which the dispersing stabilizer is introduced.(c) A halogen acid is added to the aqueous solution, in which the silver nitrate is introduced. The precipitation reaction is generated.(d) The light is irradiated in the aqueous solution, in which the precipitation reaction occurred. The reduction reaction is generated. The silver halide/silver nanocomposite is collected in the aqueous solution, in which the reduction reaction is generated, through a centrifuge. An additive quantity of the dispersing stabilizer, the silver nitrate and the halogeno-acid is 0.001-10 parts by weight, 0.01-10 parts by weight and 0.01-10 parts by weight about the aqueous solution 100.0.
Abstract:
PURPOSE: A method for manufacturing polymer nanotubes is provided to facilitate the fabrication of the polymer nanotube which is effective for eliminating heavy metal ions by eliminating electrospinning nanofibers after introducing an effective polymer on the surface of the electrospinning nanofibers through vapor deposition polymerization. CONSTITUTION: A method for manufacturing polymer nanotubes which are effective for eliminating heavy metal ions comprises the following steps: manufacturing a polymer nanofiber using an electrospinning method; dipping a solution including metal salt into the polymer nanofiber; manufacturing a coaxial nanofiber by introducing a monomer effective for removing heavy metal ions on the surface of the nanofiber having metal salt; and eliminating the polymer nanoriber in the coaxial nanofiber. The polymer which is effective for eliminating the heavy metal ions is polypyrrole, polyaniline, polyimidazole, polythiophene, polyrhodanine, PEDOT, and poly(3,4-ethylenedioxythiophene).
Abstract:
PURPOSE: A method for adsorbing and removing heavy metal ion is provided to simply and effectively adsorb and remove the heavy metal ion in a bulk solution using a high surface area and a big pore volume of mesopore carbon, and a functional group applied to the pore surface of the mesopore carbon. CONSTITUTION: A method for adsorbing and removing heavy metal ion comprises the following steps: producing a mesopore carbon/polymer nano composite by applying a polymer to mesopore carbon; forming a filter formed with the mesopore carbon/polymer nano composite; removing heavy metal ion in a solution by passing the heavy metal ion solution through the filter; and washing the filter with the heavy metal ion using a rinsing solution. The size of the pore on the mesopore carbon is 2~50 nano meters. The polymer is selected from the group consisting of polypyrrole, polyaniline, poly imidazole, polythiophene, poly rhodanin and PEDOT.