Abstract:
본 발명은 고체산화물 연료전지 및 고체산화물 연료전지 활용 시스템에 관한 것으로서, 본 발명에 따른 고체산화물 연료전지는, 연료극, 공기극 및 전해질부를 구비하는 연료전지부; 및 상기 연료극에 제철 공정에서 발생한 전로 가스를 그대로 공급하는 전로 가스 공급부;를 포함하는 것을 특징으로 한다. 이에 따라, 제철 공정에서 발생하는 부생가스를 활용하여 높은 에너지 효율러 전기를 생산할 수 있다.
Abstract:
본 발명은 염료감응형 태양전지, 전기변색소자 및 리튬이차전지의 기능이 하나의 소자에 융합되어 작동하는 광전지-전기변색-배터리 일체형 융합소자에 관한 것이다. 본 발명에 따른 일체형 융합소자는 염료감응형 태양전지(DSSC)의 활성층으로 사용되는 광전극, 광전극의 반대극으로 전기변색층으로 사용되는 대향전극, 및 리튬염을 함유하는 전해액을 포함한다. 본 발명에 따른 일체형 융합소자는 태양광 에너지를 받아 전자를 생산하는 염료감응형 태양전지(DSSC)의 기능과, 생산한 전자를 활용해서 전극을 변색하여 빛을 차단하는 전기변색소자(ECD)의 기능, 및 생산한 전자를 저장했다가 다시 꺼낼 쓸 수 있는 리튬이차전지(LIB)의 기능을 하나의 소자로 모두 구현이 가능하다.
Abstract:
PURPOSE: A cathode material for a solid oxide fuel cell, and a synthetic method thereof are provided to secure the excellent electric conductivity of the material, and to offer the thermal expansion property suitable for a samaria-doped ceria electrolyte. CONSTITUTION: A cathode material for a solid oxide fuel cell is formed with La_(1-x)Sr_xCo_(1-y)Fe_yO_3-La_2NiO_(4+delta) based complex ceramics sintered body. A synthetic method of the cathode material comprises a step of molding a La_(1-x)Sr_xCo_(1-y)Fe_yO_3-La_2NiO_(4+delta) compound, and plasticizing the compound. The La_(1-x)Sr_xCo_(1-y)Fe_yO_3-La_2NiO_(4+delta) compound is produced by dissolving La(NO3)3·6H2O, Sr(NO3)2·6H2O, Co(NO3)2·6H2O, Fe(NO3)3·9H2O, and glycine to distilled water, and heating.
Abstract:
The present invention relates to a method for manufacturing a porous cathode material for a solid oxide fuel cell using a biotemplate of an egg shell, which is cheap and has an entangled shape like twisted hair using the biological template of an egg shell common and easy to obtain.
Abstract:
PURPOSE: A manufacturing method of porous composite material is provided to sinter in moisture at temperature which is 200-300°C lower than the existing sintering method, thereby restraining the grain growth of the composite. CONSTITUTION: A manufacturing method of porous composite material comprises: a step of mixing ion conductive oxide, transition metal oxide and pore-forming agent; a step of pressure-molding and sintering by adding heat generated by current to the mixture; and a step of cooling the mixture. The sintering step conducted at 1000-1200°C within 5 minutes. The pressure-molding is conducted with the range of 10-80MPa. The heat generated by current is heat through induced current.
Abstract:
The present invention provides an anode material for a solid oxide fuel cell and a manufacturing method thereof, wherein the anode material for a solid oxide fuel cell comprises a ceramic core; and a shell enveloping the core and including nickel oxide and gadolinium-doped ceria. The anode material reduces degradation induced by nickel coagulation because gadolinium-doped ceria prevents nickel from coagulating at temperatures of 600 to 1000°C, at which a solid oxide fuel cell is used. And the anode material improves activity owing to mixed conductivity and catalytic function.
Abstract:
PURPOSE: A manufacturing method of an anode for a solid oxide fuel cell is provided to facilitate control of microstructure of a sintered material, and to sinter a material without shrinkage, expansion, melting, or grain growth. CONSTITUTION: A manufacturing method of an anode for a solid oxide fuel cell comprise a step of manufacturing a composition layer for forming a support including a metal powder and porous former; a step of manufacturing a structure for forming an anode by forming a composition layer for forming a catalyst layer, including metal oxide powder, ceramic powder, and porous former, on the composition layer for forming a support; a step of sintering the structure by using a rapid sintering method using heat generated by current; and a step of heat-treating the pressurized and sintered structure. [Reference numerals] (AA) Contraction displacement; (BB) Temperature; (CC) Contraction displacement (mm); (DD) Temperature (°C); (EE) Time (sec)