Abstract:
풍력터빈의 블레이드 처짐 감시 시스템이 개시된다. 본 발명의 일 실시예에 따른 블레이드 처짐 감시 시스템은 풍력 발전기의 타워 내부에 설치되는 것으로, 전방을 향해 레이저 빔을 조사하고 상기 레이저 빔이 블레이드에 반사되어 되돌아오는 빛을 수광하여 상기 블레이드와 상기 타워 사이의 변위 신호를 획득하는 레이저 변위 센서부; 및 상기 레이저 변위 센서부로부터 상기 변위 신호를 수신받아 데이터로 가공 처리하는 데이터 처리부를 포함한다.
Abstract:
본 발명은 기형 초음파 전파 영상화 장치에 관한 것이다. 본 발명의 일 실시 예에 따른 기형 초음파 전파 영상화 장치는 검사하고자 하는 대상체에 펄스레이저빔을 조사하는 레이저 조사부와, 펄스레이저빔의 초점을 조절하는 빔확장기, 펄스레이저빔이 대상체의 스캐닝 패스를 따라 조사되도록 하는 2축 레이저 거울 스캐너와, 펄스레이저빔을 조사받은 대상체에서 생성되는 초음파를 감지하는 센서와, 센서에서 감지되는 초음파로부터 정상 초음파를 제거하여 3차원 초음파 구조를 생성하고, 3차원 초음파 구조의 시간축을 분할하여 기형 초음파 전파 영상을 생성하는 영상처리 제어부 및 기형 초음파 전파 영상을 출력하는 출력부를 포함한다. 이에 따라, 단순 초음파 전파 영상을 통해 분석하기 어려운 복잡한 구조에서 손상의 크기를 정량화하여 계측할 수 있다.
Abstract:
PURPOSE: A fiber waves piezoelectric transducer for simultaneously active-sensing a strain and damage is provided to obtain a sufficient signal-to-noise ratio even though fiber waves are transmitted tens of meters because the index of dispersion is low in the silica fiber or the metal fiber and to manufacture a sensor which signal-to-noise ratio is dramatically long. CONSTITUTION: A fiber waves piezoelectric transducer(100) for simultaneously active-sensing a strain and damage comprises a sender-receiver piezoelectric device(110), a fiber(120), an ultrasonic wave transmitter(132), a strain monitoring part(150), and a damage information monitoring part(140). The fiber connects the sender-receiver piezoelectric device. The ultrasonic wave transmitter transmits voltage signals to the sender-receiver piezoelectric device, thereby generating ultrasonic waves. The ultrasonic wave receiver receives ultrasonic signals which are a changed form of the voltage signals detected from the piezoelectric device. The strain monitoring part processes strain information from the received ultrasonic signals. The damage information monitoring part processes damage information from the received ultrasonic signals.
Abstract:
본 발명은 선형 화약 기반 파이로 장치에서 발생하는 충격파를 가시화하고 구조의 손상 여부를 파악하기 위한 선형 화약 유도 충격파 가시화 장치 및 방법에 관한 것으로, 본 발명의 선형 화약 유도 충격파 가시화 장치는 시편을 포함하며, 실제 선형 화약 유도 충격파를 측정하는 선형 화약 유도 충격파 측정부, 시편을 포함하며, 레이저 유도 충격파를 측정하는 레이저 유도 충격파 측정부, 레이저 유도 충격파가 실제 선형 화약 유도 충격파와 유사해지도록 트레이닝하며, 재구성되는 재구성부; 재구성된 레이저 유도 충격파를 스캐닝 과정을 통해 실험적 선형 화약 유도 충격파의 전파 영상으로 생성하는 영상 생성부; 다수의 센서로부터 획득된 신호의 위상배열 신호처리를 통해 특정 방향으로 신호대잡음비가 향상된 실험적 선형 화약 유도 충격파의 전파 영상을 사용해 구조 손상을 가시화하는 구조 손상 가시화부를 포함한다.
Abstract:
PURPOSE: A guide wave simulation method using laser guide waves and a guide wave simulation device applied the same are provided to conveniently simulate physical guide waves by using the laser guide waves without performing a physical experiment requires various samples or inducing damages of the samples. CONSTITUTION: A guide wave simulation method is as follows. Physical guide waves generated at a specific portion of a sample are detected at various spots (S510). Laser guide waves corresponding to the various spots are detected (S520). The laser guide waves simulated by using the physical guide waves and the laser guide waves are calculated (S530). If the similarity of the simulated guide waves and the physical guide waves are more than a critical value, transformation models obtained in the calculation step are stored (S540-S550). The laser guide waves per each spot with respect to a specific portion of the sample are detected (S560). The simulated laser guide waves having the similarity with the physical guide waves are calculated by using the stored transformation models (S570). [Reference numerals] (AA) Start; (BB) Finish; (S510) Detect physical guide waves generated at a specific portion of a sample at various spots; (S520) Detect laser guide waves corresponding to the various spots; (S530) Calculate laser guide waves simulated by using the physical guide waves and the laser guide waves; (S540) Similarity > Critical value?; (S545) Increase a band division number (K); (S550) Record a conversion factor utilized in the prior calculation step; (S560) Detect the laser guide waves per each spot with respect to a specific portion of the sample at a predetermined interval; (S570) Calculate a model in respect to the physical guide waves; (S580) Generate an image in respect to the physical guide waves using the model
Abstract:
PURPOSE: A system for monitoring the deflection of a blade for a wind turbine is provided to measure a displacement between the blade and a wind tower or to measure the deformation of the blade through a laser displacement sensor part inside the tower, thereby diagnosing the deflection of the blade in real time. CONSTITUTION: A system for monitoring the deflection of a blade for a wind turbine includes a laser displacement sensor part (110) and a data processing part (130). The sensor part inside a wind tower irradiates a laser beam forwards, receives a light which is the laser beam being reflected and returned from a blade, and obtains a displacement signal between the blade and a tower. The data processing part receives the signal from the laser displacement sensor part, and processes the signal into data. [Reference numerals] (111) Laser irradiating unit; (113) Laser receiving unit; (115) Laser control unit; (131) Signal conversion unit; (133) Blade evaluating unit; (AA) Wireless network
Abstract:
PURPOSE: A clad removal apparatus of a hard polymer clad fiber, a clad removal method of the hard polymer clad fiber, a hard polymer clad fiber for multiple sensing and a multiple sensing system using the hard polymer clad fiber are provided to manufacture a sensor node rapidly and economically. CONSTITUTION: A clad removal apparatus (100) of a hard polymer clad fiber includes a laser apparatus part (110) and a control part (120). The laser apparatus part removes a clad (210) of a hard polymer clad fiber (200) by irradiating laser to the hard polymer clad fiber. The laser apparatus part removes the clad through photochemical reaction when the laser is in a pulse mode, and removes the clad through photothermal reaction when the laser is in a continuous wave mode. The control part converts the laser into the pulse mode or the continuous wave mode, and converts the laser from the pulse mode to the continuous wave mode when the clad is removed.
Abstract:
Provided are a fiber optic system and method for monitoring loosening of a bolt. According to an embodiment of the present invention, a system for monitoring loosening of a bolt includes a fiber optic line having at least one bolt loosening sensing node installed on each of one or more bolts; and an optical measuring device detecting the loosening of the bolts by applying optical pulses to the fiber optic line and tracing the decrease of the received light, thereby regularly monitoring fastening of multiple bolts and quantitatively measuring the degree of loosening.
Abstract:
A nondestructive testing device and a method for the control rod driving device of an upper reactor head are provided. The nondestructive testing device according to an embodiment of the present invention detects ultrasonic waves generated when a welding part between an upper reactor head and the penetration nozzle of a control rod driving device and the penetration nozzle of the control rod driving device are irradiated with laser beams for scanning, makes an image with the detected ultrasonic waves, and performs damage visualization based on ultrasonic wave propagation imaging without the position variation of an ultrasonic sensor for detecting the ultrasonic waves while multiple spots in a specific area are irradiated with the laser beams for scanning. Accordingly, the present invention can reduce inspection hours by remarkably reducing test hours, thereby directly obtaining an economical effect.