Abstract:
본 발명자들은 생체적합성 고분자 스캐폴드와 세포를 포함하는천연생체적합성 재료 지주로 이루어진 세포가 프린트된 구조체를 디자인하였다. 생체적합성 고분자 지주와천연생체적합성 재료 지주는 각 층에서 서로 깍지끼우는 방식으로 적층되어 3차원 형상을 이룬다. 제조된 세포 담지 구조체는 잘 제어된 미세구조 (100% 공극 상호연결도)를 나타내는데, 이는 생물학적 기능에 필수적이다. 본 발명의 하이브리드 구조체에 대하여 기계적 성질과 세포생존율을 시험한 결과, 탄성 계수와 최대 강도는 순수 알지네이트 구조체와 비교하여 약 5배 정도 증대되었다. 담지된 세포는 천연생체적합성 재료 지주 전체 및 전 구조체에 골고루 분포하였고, 세포생존율은 약 84%였다. 이러한 결과를 바탕으로 기계적 특성이 개선된 본 발명의 세포 담지 하이브리드 구조체는 연성 조직 및 경성 조직 재생에 매우 유용할 것으로 예상된다.
Abstract:
본 발명은 약물전달시스템을 포함하는 세포담체에 관한 것으로서, 좀더 구체적으로는 3차원 플로터를 이용하여 3차원 격자 형태의 스캐폴드를 제작한 후 이에 약물을 흡수시키고, 생체 적합성 천연 고분자 용액으로 약물이 포함된 스캐폴드를 코팅하여 제조되는 세포담체 및 그 제조방법에 관한 것이다.
Abstract:
본 발명은 3차원 하이브리드 세포담체 및 그 제조방법에 관한 것으로서, 통상의 용융플로팅 방법과 전기유체역학 프린팅 방법을 조합하여 수직 지주층 상에 가늘고 표면이 거친 실 구조를 적층함으로써 기계적 특성과 세포 부착 및 증식에 필요한 생물학적 특성을 모두 갖춘 3차원 하이브리드 세포담체를 제공한다.
Abstract:
본 발명은 생체재료로서 합성 폴리머의 단점을 극복하기 위하여 합성 폴리머와 실크 피브로인 분말을 이용하여 전기방사 방법으로 제조한 바이오복합재료에 관한 것이다. 본 발명의 바이오복합재료에서 합성 폴리머는 기질 재료로 이용되었고, 실크 피브로인 분말은 기계적 특성, 세포 부착 및 번식을 강화하는 분산 재료로서 이용되었다. 본 발명의 바이오복합재료는 전기방사를 거쳐 얻어지는데, 기계적으로 똑바로 뻗는 특성(mechanically orthotropic behavior)을 가진 복합재료 거미줄(composite webs)이 얻어진다.
Abstract:
In the present invention, posts are crosslinked by modifying an existing distribution method and spraying a calcium chloride solution for manufacturing a three-dimensional carrier containing cells. The process is evaluated by mixing osteoblast precursors in an alginate solution and preparing a three-dimensional matrix. The prepared structure containing the cells has high porosity and uniformly designed pore size and shape. As a result of verifying the size of nozzles, the cells show even distribution in the posts and have a cell survival rate of 85% with respect to initial cell survival rate.
Abstract:
PURPOSE: A 3-D hybrid cell carrier and a manufacturing method thereof are provided to improve mechanical firmness and to have a rough surface. CONSTITUTION: A method for manufacturing a 3-D hybrid cell carrier comprises the following steps: forming a pillar layer on a stage using a biocompatible material; adding a conductive or a non-conductive cohesive solution to the pillar layer; forming electric fields between an electrohydrodynamic nozzle and the stage; forming a thread layer in one or more directions; forming a pillar layer using a biocompatible material; forming a thread layer in one or more directions; and removing the cohesive solution and the electric fields.
Abstract:
PURPOSE: An electrohydrodynamic plotting apparatus, a method for the same, and a three dimensional laminated structure are provided to form a stable laminated structure and smoothly move the nutrient substances and cells based on a superior porosity. CONSTITUTION: An electrohydrodynamic plotting apparatus includes: a liquid supporting unit with a nozzle for jetting conductive fluid based on electrohydrodynamic pressures; a stage which is positioned on the spaced part from the nozzle and on which the conductive fluid is stacked; a target solution bath containing a viscose solution for immerging the stage; upper and lower electrodes for generating electric fields between the nozzle and the stage; a power supplying device for applying voltages to the nozzle and the electrodes; and a control unit for controlling the voltages.
Abstract:
PURPOSE: A cell carrier containing a drug delivery system is provided to improve mechanical strength and to simplify the production thereof. CONSTITUTION: A cell carrier containing a drug delivery system is produced as follows. A three-dimensional scaffold is made of biocompatible polymer. The three-dimensional scaffold is freeze-dried. The freeze-dried scaffold is crosslinked. The cross-combined scaffold is freeze-dried. Chemicals are absorbed into the freeze-dried scaffold. The scaffold is coated with biocompatible natural polymer. The biocompatible natural polymer is inhaled after the coating. The biocompatible natural polymer is dried.
Abstract:
The present inventors design a biocompatible polymer scaffold and a structure in which, cells which is formed with natural biocompatible material supports including cells, are printed. The biocompatible polymer and the natural biocompatible material make three dimensional shapes by laminating by clasping each other on each layer. A hybrid structure has a biphasic structure. One can support biological activities as the natural biocompatable material supports in which the cell is dipped, and the biocompatible polymer mechanically supports the support in which the cell is dipped. The manufactured cell impregnated structure (PA-1) expresses a well controlled micro structure (pore size = 488 ± 47 μm; 100% pore interconnectivity) which is essential for biological function. By testing mechanical properties and cell survival rate for the hybrid structure of the present invention, modulus of elasticity and peak strength are approximately 5 times increased compared to a pure alginate structure. The impregnated cells are uniformly distributed over the natural biocompatible material support and all structures, and the cell survivor rate is approximately 84%. The cell impregnated hybrid structure of the present invention in which the mechanical properties are improved based on such result can be predicted to be useful for regenerating soft tissues and hard tissues.