Abstract:
본 발명은 인공관절 등에 사용되는 초고분자량 폴리에틸렌의 내마모성이 향상된 내마모성 초고분자량 폴리에틸렌 복합체 및 그의 제조방법에 관한 것이다. 본 발명에 따르면, 충전제로 사용되는 무기입자 표면에 초고분자량 폴리에틸렌 중합용 전이금속 촉매/조촉매를 담지하고, 담지된 촉매 위치로부터 초고분자량 폴리에틸렌을 중합함으로써 무기입자 표면이 초고분자량 폴리에틸렌으로 피막된 복합 분말을 얻고, 이들 분말을 직접 성형해 고함량의 무기물 충전과 균일한 무기물 분산을 갖는 인공관절용 초고분자량 폴리에틸렌 복합체를 얻는다. 본 발명에 의해 제조된 무기입자가 충전된 초고분자량 폴리에틸렌 인공관절 재료는 충전되지 않은 초고분자량 폴리에틸렌 재료에 비해 뛰어난 내마모성을 보여 준다. 초고분자량 폴리에틸렌, 무기입자, 복합체, 내마모성, 인공관절, 촉매 중합, 분산
Abstract:
본 발명은 탄소나노튜브가 균일하게 분산된 초고분자량 폴리에틸렌을 이용하여 인공관절 등의 재료에 사용되는 내마모성이 향상된 초고분자량 폴리에틸렌 복합체 및 그의 제조 방법에 관한 것이다. 본 발명의 탄소나노튜브가 균일하게 분산된 초고분자량 폴리에틸렌 복합체는 탄소나노튜브가 충전되지 않은 종래의 상업용 초고분자량 폴리에틸렌보다 매우 향상된 내마모성과 기계적 특성을 갖는다.
Abstract:
본 발명은 인공관절 등에 사용되는 초고분자량 폴리에틸렌의 내마모성이 향상된 내마모성 초고분자량 폴리에틸렌 복합체 및 그의 제조방법에 관한 것이다. 본 발명에 따르면, 충전제로 사용되는 무기입자 표면에 초고분자량 폴리에틸렌 중합용 전이금속 촉매/조촉매를 담지하고, 담지된 촉매 위치로부터 초고분자량 폴리에틸렌을 중합함으로써 무기입자 표면이 초고분자량 폴리에틸렌으로 피막된 복합 분말을 얻고, 이들 분말을 직접 성형해 고함량의 무기물 충전과 균일한 무기물 분산을 갖는 인공관절용 초고분자량 폴리에틸렌 복합체를 얻는다. 본 발명에 의해 제조된 무기입자가 충전된 초고분자량 폴리에틸렌 인공관절 재료는 충전되지 않은 초고분자량 폴리에틸렌 재료에 비해 뛰어난 내마모성을 보여 준다.
Abstract:
PURPOSE: Provided are an ultra-high molecular weight polyethylene composition which is improved in abrasion resistance by charging an inorganic material, its preparation method, and an ultra-high molecular weight polyethylene molded product used in an artificial joint or a machine part prepared by using the composition. CONSTITUTION: The ultra-high molecular weight polyethylene composition comprises an ultra-high molecular weight polyethylene; and 5-50 wt% of an inorganic particle selected from the group consisting of kaolinite, talc, smectite, montmorillonite and mica. Preferably the ultra-high molecular weight polyethylene has a molecular weight of 1,750,000-6,000,000. The method comprises the step of mixing the ultra-high molecular weight polyethylene fine particle and the inorganic particle with stirring, or mixing them in a suitable solvent and drying the mixture.
Abstract:
PURPOSE: A method for preparing a clay-dispersed olefin-based polymer nanocomposite and a polyolefin resin by using the nanocomposite are provided, to improve the tensile strength and the heat transformation temperature without deterioration of the transparency. CONSTITUTION: The method comprises the steps of dipping a catalyst for polymerization of olefin into clay, dipping a co-catalyst into clay, and polymerizing the olefin, wherein the clay is an organic treated clay having a functional group capable of a catalyst being supported to, the catalyst for polymerization of olefin is a Ziegler-Natta catalyst where chlorine or oxychloride is bonded with titanium or vanadium, and the co-catalyst is an organoaluminum. Preferably the clay is selected from the group consisting of montmorillonite, hectorite, saponite, sauconite, vermiculite, magadiite and kenyaite; the catalyst for polymerization of olefin is an organometal complex bonded with a metal selected from Zr, Ti, Ni and Pd; and the organoaluminum used as a co-catalyst is selected from (C2H5)3Al, (C2H5)2AlCl, (C2H5)AlCl2, (t-C4H9)3Al and (iso-C4H9)3Al.
Abstract translation:目的:提供一种通过使用该纳米复合材料制备粘土分散的烯烃基聚合物纳米复合材料和聚烯烃树脂的方法,以提高拉伸强度和热转变温度而不会使透明度劣化。 构成:该方法包括将用于烯烃聚合的催化剂浸渍到粘土中,将助催化剂浸渍到粘土中并使烯烃聚合的步骤,其中粘土是具有能够将催化剂负载的官能团的有机处理粘土 用于烯烃聚合的催化剂是其中氯或氯氧化物与钛或钒结合的齐格勒 - 纳塔催化剂,并且该助催化剂是有机铝。 优选地,粘土选自蒙脱石,锂蒙脱石,皂石,锌蒙脱石,蛭石,magadiite和肯纳石; 用于烯烃聚合的催化剂是与选自Zr,Ti,Ni和Pd的金属键合的有机金属配合物; 并且用作助催化剂的有机铝选自(C 2 H 5)3 Al,(C 2 H 5)2 AlCl,(C 2 H 5)AlCl 2,(tC 4 H 9)3 Al和(isoC 4 H 9)3 Al。
Abstract:
PURPOSE: A method for preparing a clay-dispersed olefin-based polymer nanocomposite and a polyolefin resin by using the nanocomposite are provided, to improve the tensile strength and the heat transformation temperature without deterioration of the transparency. CONSTITUTION: The method comprises the steps of dipping a catalyst for polymerization of olefin into clay, dipping a co-catalyst into clay, and polymerizing the olefin, wherein the clay is an organic treated clay having a functional group capable of a catalyst being supported to, the catalyst for polymerization of olefin is a Ziegler-Natta catalyst where chlorine or oxychloride is bonded with titanium or vanadium, and the co-catalyst is an organoaluminum. Preferably the clay is selected from the group consisting of montmorillonite, hectorite, saponite, sauconite, vermiculite, magadiite and kenyaite; the catalyst for polymerization of olefin is an organometal complex bonded with a metal selected from Zr, Ti, Ni and Pd; and the organoaluminum used as a co-catalyst is selected from (C2H5)3Al, (C2H5)2AlCl, (C2H5)AlCl2, (t-C4H9)3Al and (iso-C4H9)3Al.
Abstract:
본 발명은 무기입자가 충전되어 내마모성이 향상된 초고분자량 폴리에틸렌 조성물 및 이의 제조방법에 관한 것이다. 본 발명에 따른 초고분자량 폴리에틸렌 조성물은 초고분자량 폴리에틸렌과 인체에 무해한 무기입자를 포함함으로써, 초고분자량 폴리에틸렌의 내마모성이 획기적으로 향상되어, 인공관절 및 내마모, 내마찰 특성을 필요로 하는 기계 부품의 제작에 적용될 수 있다. 이 때, 상기 무기 입자의 충전 함량에 따라서 초고분자량 폴리에틸렌의 내마모성이 증가하게 된다. 특히, 본 발명에 의하면, 인공관절에 이용되는 초고분자량 폴리에틸렌과 금속 표면과의 절대 마모량을 감소시켜 인공관절의 수명을 획기적으로 연장시킬 수 있다.
Abstract:
본 발명은 탄소나노튜브가 균일하게 분산된 초고분자량 폴리에틸렌을 이용하여 인공관절 등의 재료에 사용되는 내마모성이 향상된 초고분자량 폴리에틸렌 복합체 및 그의 제조 방법에 관한 것이다. 본 발명의 탄소나노튜브가 균일하게 분산된 초고분자량 폴리에틸렌 복합체는 탄소나노튜브가 충전되지 않은 종래의 상업용 초고분자량 폴리에틸렌보다 매우 향상된 내마모성과 기계적 특성을 갖는다. 초고분자량 폴리에틸렌, 탄소나노튜브, 직접 중합법, 분산도, 내마모성