Abstract:
A method for manufacturing a granular zirconium mesostructure is provided to prevent an outflow of powder by changing a powdered mesostructure into a granular structure, and to solve fundamentally high pressure and short circuit problems within a reactor. A method for manufacturing a granular zirconium mesostructure includes the steps of: (S101) mixing 5-100 w/v% of acrylamide with an accelerator and a cross-linking agent to form a first mixture solution, wherein the accelerator increases a gelation rate of acrylamide, and the cross-linking agent links acrylamides with each other to form a network structure; (S102) mixing the first mixture solution with a powdered zirconium mesostructure to form a second mixture solution; (S103, S104) injecting a reaction initiator into the second mixture solution to form gel, wherein the reaction initiator initiates the transition of acrylamide to gel; and (S105) molding the gel into a predetermined size to form the granular zirconium mesostructure. Further, the accelerator is 3-(dimethylamino)propionitrile.
Abstract:
A method for preparing polyacrylamide comprising zero-valent nano-iron encapsulated therein is provided to obtain a strong reducing agent for nitrate-based nitrogen under a general ground water pH condition without causing generation of secondary pollutants. The method for preparing polyacrylamide comprising zero-valent nano-iron encapsulated therein comprises the steps of: reacting an iron compound with a reducing agent to provide zero-valent nano-iron; and polymerizing a mixture containing acrylamide, a catalyst, a crosslinking agent and a polymerization initiator in a weight ratio of 10-40:0.5-4:1-5:0.5-2 in the presence of the zero-valent nano-iron obtained from the preceding step. The zero-valent nano-iron is added to the mixture in an amount of 1-200%(w/v).
Abstract:
Mezo-porous structure of zirconium sulphate for phosphorous ion-exchange is provided to have high specific surface area and uniform mezo-porosity, and to effectively derive ion-exchange of sulphate and phosphate and to remove phosphorous fraction from water by adopting hydrothermal synthesis of a mixture of surfactant and zirconium sulphate(IV) to obtain the structure. The method for preparing mezo-porous structure of zirconium sulphate comprises the steps of: dissolving acetyltrimethyl ammonium bromide as a surfactant in ultra-purified water; dissolving zirconium sulfate tetrahydrate in the ultra-purified water; mixing the dissolved acetyltrimethyl ammonium bromide solution and the dissolved zirconium sulfate tetrahydrate; conducting synthesis of a structure from the prepared mixture; and removing unreacted surfactant from the prepared product to finally obtain the mezo-porous zirconium sulfate structure.