Abstract:
본 발명은 탈봇효과를 이용하여 박막태양전지의 광효율을 증가시키는 부착형 탄성 중합체 스탬프 및 이의 제조 방법에 관한 것으로서, 기저부 및 기저부의 하단에 서로 동일한 크기 및 형태를 가지고 주기적으로 배열된 복수의 돌출부를 포함하되, 돌출부의 주기는 입사광의 파장과 동일하거나 큰 주기를 가지고 돌출부의 부피는 비돌출부의 공간 부피와 동일하여 탈봇효과(Talbot effect)로 광을 자기집속(Self-focusing)시키는 것을 특징으로 하는 부착형 탄성 중합체 스탬프에 관한 것이다. 본 발명에 따른 부착형 탄성 중합체 스탬프는 탈봇효과(Talbot effect)로 광을 포획하여 광전변환 효율을 향상시키고, 박막태양전지의 표면에 탈부착 가능한 장점이 있다.
Abstract:
The present invention relates to a three-dimensional nanostructure metal oxide manufacturing method comprising: (a) a step of spin-coating a substrate with a photoresist; (b) a step of forming pores of a periodic three-dimensional porous nanostructured pattern on the photoresist through a proximity-field nanopatterning method; (c) a step of inducing a metal oxide into the three-dimensional porous pores by using the photoresist, as a template, wherein the periodic three-dimensional porous nanostructured pattern is formed by an atomic layer deposition using a metal precursor; and (d) a step of obtaining a three-dimensional nanostructured porous metal oxide of an inverse form of the three-dimensional porous nanostructure formed on the photoresist by removing the photoresist template, and to a metal oxide manufactured thereby.
Abstract:
The present invention relates to a method of manufacturing a multi-dimensional nanostructure metal oxide comprising: (a) a step of spraying a photoresist on a substrate; (b) a step of forming the pore of a regular three-dimensional porous nanostructure pattern on the photoresist through a proximity-field nanopatterning; (c) a step of bringing a first metal oxide in the three-dimensional porous pore by using the photoresist in which the regular three-dimensional porous nanostructure pattern is formed by an atomic layer deposition method using a first metal precursor as a template; (d) a step of obtaining the porous first oxide which is three-dimensionally nanostructured in an inverse form of the three-dimensional porous nanostructure formed on the photoresist by removing the photoresist template; and (e) a step of forming a second metal oxide of a one-dimensional nanostructure on the inner space or surface of the first metal oxide which is three-dimensionally nanostructured, and to a multi-dimensional nanostructure metal oxide manufactured thereby.