Abstract:
PURPOSE: Provided are a dye-sensitized solar cell provided with a silane coupling co-absorbent capable of preventing a back electron transfer reaction and improving aggregation of the dye by having corrosion resistance for an electrolyte and effectively absorbing onto the surface of titanium dioxide, and a manufacturing method thereof. CONSTITUTION: A dye-sensitized solar cell is provided with a sillane coupling co-absorbent wherein the co-absorbent includes at least one functional group selected from a group consisting of a triethoxysilyl, a triethoxy vinyl and a trietoxy group.
Abstract:
PURPOSE: Triphenylamine salicylic acid is provided to improve photoelectric conversion efficiency by using the triphenylamine salicylic acid as a ligand for a photoelectrochemical solar cell. CONSTITUTION: Triphenylamine salicylic acid is represented by chemical formula 1. A manufacturing method of the triphenylamine salicylic acid comprises a step of reacting triphenylamine-4-boronic acid and 5-bromo salicylic acid under the presence of platinum acetate. A photoelectrochemical solar cell using a ligand-metal charge transition comprises an anode in which a nanooxide layer with a ligand attached to the surface thereof is formed. The ligand is the triphenylamine salicylic acid represented by the chemical formula 1.
Abstract:
PURPOSE: A nanogel-type electrolyte is provided to improve long term stability and photoelectric conversion efficiency and to reduce concentration of a used ionic liquid. CONSTITUTION: A nanogel-type electrolyte comprises a nanoparticle with a chemically bonded imidazolium salt indicated in chemical formula 1, and an ionic liquid electrolyte. A manufacturing method of the nanoparticle with the chemically bonded imidazolium salt comprises: a step of manufacturing a nanoparticle which is surface-treated with 3-glycidyloxypropyltrimethoxysilane by reacting the nanoparticle and 3-(trimethoxysilyl)propyl methacrylate; a step of reacting the surface-treated nanoparticle and imidazole; and a step of reacting the result with methyl iodide.
Abstract:
본 발명은 태양전지 전극 페이스트의 제조방법, 그 페이스트, 그 페이스트를 이용한 전극의 제조방법, 그 전극 및 그 전극을 포함하는 태양전지를 제공한다. 본 발명에 따르는 태양전지 전극 페이스트의 제조방법, 그 페이스트, 그 페이스트를 이용한 전극의 제조방법, 그 전극 및 그 전극을 포함하는 태양전지는 티타늄아이소프로폭사이드, 아세트산 및 계면활성제를 알콜용매에 가하여 혼합하는 S1단계와, 상기 혼합물에 카본블랙을 가하고 물을 이용하여 젤화물로 상변화시키는 S2단계와, 상기 젤화물을 열처리하는 S3단계 및 상기 열처리된 젤화물에서 용매를 제거하고 에탄올, 터핀올 및 에틸셀룰로오스로 이루어진 군에서 선택된 적어도 하나를 가하여 혼합하여 페이스트를 제조하는 S4단계를 포함하는 것을 특징으로 하는데, 이에 의할 때, 종래의 이산화티탄 페이스로 광전극을 형성하는 경우에 발생될 수 있는 크랙(갈라짐) 불량을 방지하고 충분한 표면적의 거대 기공이 형성되어 염료의 흡착이 효과적이어서 광변환효율이 극대화될 수 있다.
Abstract:
본 발명은 이미다졸륨염이 화학적으로 결합된 나노입자, 이의 제조방법 및 이를 포함하는 염료감응 태양전지용 나노젤형 전해질에 관한 것이다. 본 발명은 염료감응 태양전지의 장기 안정성과 광전변환효율을 동시에 향상시키면서 이온성 액체의 사용 농도를 낮추어 생산 단가를 절감할 수 있는 염료감응 태양전지용 나노젤형 전해질을 염료감응 태양전지에 활용함으로써, 우수한 경제효율성, 안정성 및 광전변환효율을 갖는 염료감응 태양전지를 제공할 수 있다.
Abstract:
A manufacturing method for a dye-sensitized solar cell surface coating agent, the dye-sensitized solar cell surface coating agent and a dye-sensitized solar cell coated with the dye-sensitized solar cell surface coating agent are disclosed. The manufacturing method for the dye-sensitized solar cell surface coating agent, the dye-sensitized solar cell surface coating agent and the dye-sensitized solar cell coated with the dye-sensitized solar cell surface coating agent according to the present invention comprise: a step S1 of obtaining a graphene oxide precursor by injecting graphite, sodium nitrate and potassium permanganate into strong acid and mixing them; a step S2 of obtaining graphene oxide by adding an acidic solution in the graphene oxide precursor, mixing them and filtering them; a step S3 of obtaining a graphene quantum dot solution by adding the graphene oxide in a solvent, mixing them with ultrasonic waves, hydrothermal-treating them at a temperature of 150-250; and a step S4 of manufacturing a graphene quantum dot coating agent by mixing the graphene quantum dot solution and a binder. According to the present invention, the visible ray penetration of sunlight is improved by removing the existing ultraviolet-proof film and the efficiency of the solar cell is increased by converting the ultraviolet rays of sunlight into visible rays and increasing the intensity of visible rays, thereby reducing production costs in manufacture.
Abstract:
Disclosed are a method for manufacturing a dye-sensitized solar cell with excellent light absorption efficiency, and a solar cell thereof. According to the present invention, the method for fabricating a negative electrode for dye-sensitized solar cells comprises: a step S1 for preparing a transparent substrate having a transparent conductive oxide layer; a step S2 for forming a nano-oxide layer by coating the upper part of the transparent conductive oxide layer with a composition containing titanium dioxide, and then applying heat treatment; and a step S3 for forming a negative electrode having a dye layer by enabling the nano-oxide layer to absorb a dye, and then drying the nano-oxide layer. The dye layer is composed of a dye absorbing short-wavelength light and long-wavelength light. As a result, the method for manufacturing a dye-sensitized solar cell with excellent light absorption efficiency improves light conversion efficiency by enabling short-wavelength sunlight to be absorbed in the solar cell before the sunlight is dissipated.