Abstract:
본 발명의 촉매의 제조 방법 및 촉매에서, 본 발명의 촉매의 제조 방법은 다공성 탄소 지지체에 고상의 금속염 수화물을 용융 함침시키는 단계; 금속염 수화물이 용융 함침된 다공성 탄소 지지체를 환원 분위기 하에서 열처리하는 단계를 포함하고, 상기 열처리하는 단계에서, 다공성 탄소 지지체 내에 금속 나노입자들이 형성된다.
Abstract:
The present invention relates to a core-shell nanoparticle, a manufacturing method thereof, and a gas sensor using the same and, more specifically, to a core-shell nanoparticle comprising: a core consisting of a first metal oxide; and a shell consisting of a second metal oxide, wherein the first metal oxide and the second metal oxide have different oxidation state and are the oxides of same metal, a manufacturing method of the core-shell nanoparticle, and a gas sensor using the same. The present invention is capable of providing the gas sensor with excellent sensitivity and stability by using the core-shell nanoparticle.
Abstract:
본발명은증류수를용매로사용한액상반응에의한구리셀레나이드의제조방법에관한것으로, 본발명에의하면사용되는구리염화물, 반응시간및 반응온도등을조절하여입자의조성조절이용이하고입자균일성이향상된구리셀레나이드를제조할수 있다. 또한, 합성된구리셀레나이드를산처리와같은간단한방법을통해조성을다양하게변화시킬수 있으며 CuInSe의전구체로유용하게사용할수 있다.
Abstract:
본 발명은 증류수를 용매로 사용한 액상 반응에 의한 구리 셀레나이드의 제조방법에 관한 것으로, 본 발명에 의하면 사용되는 구리 염화물, 반응시간 및 반응온도 등을 조절하여 입자의 조성 조절이 용이하고 입자 균일성이 향상된 구리 셀레나이드를 제조할 수 있다. 또한, 합성된 구리 셀레나이드를 산처리와 같은 간단한 방법을 통해 조성을 다양하게 변화시킬 수 있으며 CuInSe 2 의 전구체로 유용하게 사용할 수 있다.
Abstract:
본 발명은, Fe(NO 3 ) 3 9H 2 O와 Pd(NO 3 ) 2 2H 2 O을 다공성 탄소 주형틀에 용융 함침법(Melt-infilteration process: MIP)을 통해 함침시켜 무정형 Pd/Fe-C 복합체를 형성하는 단계; 및 상기 복합체를 비활성 분위기에서 고온에서 소성시켜 상기 다공성 탄소 주형틀에 지지된 팔라듐 및 Fe 3 O 4 나노 입자를 형성하는 단계를 포함하는, Pd/Fe 3 O 4 /C 촉매 제조 방법, 및 이러한 방법에 의해 제조된 촉매, 및 이 촉매를 활용하는 바이아릴 제조 방법에 관한 것이다.
Abstract:
The present invention relates to a method for manufacturing rhodium nanoparticles by a hydrothermal method and a reduction reaction of nitroarene using rhodium nanoparticles as a catalyst. The method for manufacturing rhodium nanoparticles, according to the present invention, is capable of easily controlling the process, reducing bad effects on the environments, and increasing industrial availability. The rhodium nanoparticles manufactured by the present invention can be recycled without the loss in catalyst activity, and can be efficiently used when reducing nitroarene from water.
Abstract:
PURPOSE: A catalyst for the reduction of nitroarene compounds and a manufacturing method thereof are provided to show high catalyst activation to the reduction reaction of the nitroarene compounds due to a synergic catalytic effect of inorganic nanoparticles and graphene oxide nanosheets, to provide improved catalyst stability, and to manufacture nanocomposites of inorganic nanoparticle-graphene oxide nanosheets by a single synthesis process. CONSTITUTION: A catalyst for the reduction of nitroarene compounds includes inorganic nanoparticles coated with a free ligand and graphene oxide nanosheets supporting the inorganic nanoparticles. The graphene oxide nanosheets are a reduced graphene oxide nanosheets. The inorganic nanoparticles are selected from the group consisting of metallic nanoparticles, metal oxide nanoparticles, and their composite. The free ligand is selected from the group consisting of substituted or non-substituted aminopyridine and pyridine series. The average diameter of the inorganic nanoparticle coated with free ligand is 1-20 nm. The graphene oxide nanosheet has the thickness of 0.5-1.5 nm and the length of 0.7-1.5 micrometers. [Reference numerals] (AA) Zeta-potential(mV); (BB) Manufacturing embodiment 1; (CC) Embodiment 1; (DD) Embodiment 2; (EE) Embodiment 3; (FF) Embodiment 4; (GG) Embodiment 5; (HH) Manufacturing embodiment 2; (II) Catalyst