탄소 코팅된 양극 활물질 제조방법
    2.
    发明申请
    탄소 코팅된 양극 활물질 제조방법 审中-公开
    生产碳涂阳极电极活性材料的方法

    公开(公告)号:WO2014088257A1

    公开(公告)日:2014-06-12

    申请号:PCT/KR2013/010881

    申请日:2013-11-28

    CPC classification number: H01M4/583 H01M4/366

    Abstract: 양극 활물질의 제조방법이 개시된다. 양극 활물질을 제조하기 위하여 폴리올 용매에 원료물질들을 혼합하여 반응 용액을 제조하고, 이를 연소시켜 제1 양극 활물질 분말을 제조한다. 이어서, 제1 양극 활물질 분말을 가연성 유기 용액으로 피복한 후 이를 연소시켜 제2 양극 활물질 분말을 제조한다. 이와 같은 방법으로 제조된 양극 활물질은 향상된 용량 및 결정성을 갖는다.

    Abstract translation: 公开了一种正极活性物质的制造方法。 为了制造正极活性物质,将原料混合在多元醇溶剂中以产生反应溶液,然后将其燃烧以产生第一正极活性物质粉末。 然后,第一正极活性物质粉末涂覆有可燃性有机溶剂,然后燃烧以产生第二正极活性物质粉末。 通过该方法制造的正极活性物质具有改善的容量和结晶度。

    이산화망간 나노입자의 제조방법
    7.
    发明授权
    이산화망간 나노입자의 제조방법 失效
    MNO2纳米颗粒的合成方法

    公开(公告)号:KR100842295B1

    公开(公告)日:2008-06-30

    申请号:KR1020070032814

    申请日:2007-04-03

    Abstract: A preparation method of manganese dioxide nano-particle is provided to obtain manganese dioxide nano-particle economically in a simple process for short time by oxidation-reduction reaction of separate aqueous solutions of manganese chloride and potassium permanganate. A preparation method of manganese dioxide nano-particle comprises steps of: preparing separate aqueous solution of MnCl2 and KMnO4(S10); adding KMnO4 aqueous solution to the MnCl2 aqueous solution under stirring(S20); stirring the mixture for about 1 hour(S30); filtering the mixture and drying the filtrate(S40); and analyzing the product precipitate(S50). In the oxidation-reduction reaction of the aqueous solutions, the manganese precursor optionally plays as an oxidant or as a reductant. The shape of the manganese dioxide nano-particle is controlled by the condition for synthesis in the aqueous solution or by the changes in the process for nucleus forming and for particle forming. Under the control of the precursor species and the synthesis condition, the manganese oxide optionally comprises potassium ion and sodium ion. Further, the nano-particle is gamma-MnO2 and has a diameter of 10 to 150 nm.

    Abstract translation: 提供二氧化锰纳米颗粒的制备方法,通过单独的氯化锰水溶液和高锰酸钾的氧化还原反应,在短时间内通过简单的方法经济地获得二氧化锰纳米颗粒。 二氧化锰纳米颗粒的制备方法包括以下步骤:制备单独的MnCl 2和KMnO 4水溶液(S10); 在搅拌下向KMCl 2水溶液中加入KMnO4水溶液(S20); 搅拌混合物约1小时(S30); 过滤混合物并干燥滤液(S40); 并分析产物沉淀物(S50)。 在水溶液的氧化还原反应中,锰前体可任选地作为氧化剂或还原剂起作用。 二氧化锰纳米颗粒的形状由水溶液中的合成条件或核成型和颗粒形成过程的变化控制。 在前体物质和合成条件的控制下,锰氧化物任选地包含钾离子和钠离子。 另外,纳米粒子是γ-MnO 2,直径为10〜150nm。

    용매열합성법을 이용한 하이브리드 커패시터 전극재료의 제조방법
    8.
    发明公开
    용매열합성법을 이용한 하이브리드 커패시터 전극재료의 제조방법 有权
    用溶剂热合成法制造混合电容器电极材料的方法

    公开(公告)号:KR1020170093350A

    公开(公告)日:2017-08-16

    申请号:KR1020160014621

    申请日:2016-02-05

    Abstract: 본발명은용매열합성법을이용한하이브리드커패시터전극재료의제조방법에관한것으로, 보다구체적으로는전기화학적방법에의해표면의일부가리튬화된비대칭형하이브리드커패시터의전극재료를제조하는방법에관한것이다. 본발명에제조방법에의하면전기화학적으로빠르게표면의일부만리튬이온을삽입함으로써비축전용량및 에너지밀도를개선할수 있는비대칭형하이브리드커패시터의전극재료를제조할수 있다.

    Abstract translation: 本发明涉及到的是,用于制造非对称混合电容器的表面的一部分被通过电化学锂化法的电极材料更具体地euroneun方法涉及一种方法,用于使用溶剂热合成制备的混合电容器的电极材料。 根据本发明在生产过程中,可以制备不对称的混合电容器,可以提高非电力存储容量和通过电化学插入锂离子快速表面的一部分的能量密度的电极材料。

    공압화학 이미턴스 분광법 및 공압화학 단속적정법을 이용하여 수소저장소재의 화학확산계수 및 반응속도론적 정보를 분석하는 방법 및 분석시스템

    公开(公告)号:KR101592225B1

    公开(公告)日:2016-02-22

    申请号:KR1020140040987

    申请日:2014-04-07

    Abstract: 본발명은수소저장소재(hydrogen storage material)의화학확산계수(chemical diffusivity, D)를구하는방법과더불어수소저장소재의반응속도론적(kinetics) 정보를정성적및 정량적으로분석하는방법을제공한다. 이에본 발명의공압화학이미턴스분광법(Pneumatochemical Immitacne Spectroscopy, PnIS)으로의분석법과공압화학단속적정법(Pneumatochemical Titration Technique, PnITT)에의하여수소저장소재의화학확산계수및 반응속도론적정보를각각주파수영역과시간영역에서분석하는방법을제공한다. 즉 PCI 수소압력감쇠곡선으로부터분석할시간과주파수범위를결정하고각 수소저장정도(storage of state, SoS)에따른화학확산계수및 반응속도론적정보를도출하였다. 그리고 PnIS 분석법은시간영역의정보를푸리에변환하여주파수영역의정보로변환하여분석하는방법으로서, 수소압력감쇠양상이주파수영역의인덕턴스효과로표현되어이미턴스평면에원의궤적(inductive loop)으로나타나는데이를등가회로(equivalent circuit)로피팅하고또는시각적으로읽어서손쉽게화학확산계수및 반응속도론적정보를구하는것이다. PnIS 분석법의결과는 PnITT의분석결과와화학확산계수및 여러반응속도론적정보가정성적및 정량적으로일치함을확인하였다. 본발명의실시예에서는수소저장소재 Mg/MgH에 PnIS 분석법과 PnITT을적용하였다. Sievert 타입의측정기기로부터 325도에서 Mg/MgH의수소압력감쇠(relaxation) 정보를담은압력-조성-등온(Pressure-Composition-Isothermal, PCI) 데이터를얻었다. 각포인트에서유효부피비율(effective volume ratio) λ값을구하였는데, λ가평탄구간에서음의값을갖지않게선형회귀하고평균을내었다. 수소압력감쇠곡선을푸리에-라플라스변환(Fourier-Laplace transformation)하여, 이미턴스평면의원의궤적(inductive loop) 으로나타내고이를등가모델(equivalent circuit)로피팅또는시각적으로읽어화학확산계수및 반응속도론적정보를얻었다. PCI 평탄구간에서 Mg 대비 MgH상이증가함에따라화학확산저항이증가하고화학확산계수가작아지는양상을파악하였고이는 shrinking-core model을따름을확인하였다. 수소압력감쇠곡선을 PnITT로피팅하여시상수와감쇠시간을구하고그로부터화학확산계수및 자기확산계수(self-diffusivity)를구하였다. 평탄구간에서수소저장량이증가할수록화학확산계수와자기확산계수가점차감소하는데이는 PnIS 분석법으로얻은결과와정성적및 정량적으로일치한다.

Patent Agency Ranking