Abstract:
본 발명은 다공성 유무기혼성체 (porous organic inorganic hybrid materials)의 신규 제조방법으로서, 수득되는 다공성 유무기혼성체를 무기염으로 처리하여 정제하는 단계를 포함하며, 특히, 불산을 사용하지 않는 것을 특징으로 하는 제조 방법, 상기 제조 방법에 의하여 제조된 다공성 유무기혼성체 및 이의 촉매적 용도에 관한 것으로서, 상기 다공성 유무기혼성체는 높은 표면적과 분자크기 또는 나노크기의 세공을 갖고 있어 흡착제, 기체 저장, 센서, 멤브레인, 기능성 박막, 촉매 및 촉매 담체 등에 사용될 수 있으며 세공크기보다 작은 게스트 분자를 포집하거나 세공크기를 이용하여 분자들을 분리하는데 사용될 수 있다. 유무기혼성체, 수열합성, 나노입자, 세공물질, 촉매, 마이크로파 합성
Abstract:
A manufacturing method of porosity organic and inorganic hybrid is provided to manufacture and refine porosity organic and inorganic hybrid by an eco-friendly method using a new manufacturing process which does not use a hydrofluoric acid at all. A manufacturing method of porosity organic and inorganic hybrid comprises steps of: 1) manufacturing the reactant mixed solution by mixing a metal precursor, an organic compound acting on a ligand, an acid and a solvent; 2) heating the reactant mixed solution over 100‹C by electric heating or irradiating a microwave; 3) refining the porosity organic and inorganic hybrid by processing obtained the porosity organic and inorganic hybrid in the step 2) as inorganic salts.
Abstract:
A preparation method of surface functionalized porous organic-inorganic hybrid materials that can be used in adsorbents, gas storage bodies, sensors, membranes, functional thin films, catalysts, and catalyst carriers is provided, and a catalyst composition for an acid or base reaction, hydrogenation, dehydrogeneration, a carbon-carbon bonding reaction, or an oxidation reaction by using the surface functionalized porous organic-inorganic hybrid materials or porous organic-inorganic mesoporous materials is provided. A preparation method of surface modified porous organic-inorganic hybrid materials is characterized in that the surface modified porous organic-inorganic hybrid materials are prepared by bonding organic materials, polyoxometalates, ionic liquids, organometallic compounds, or mixtures thereof having functional groups selected from an amino group(-NH2), a thiol group(-SH) and a phosphoric group(-PO(OH)2) to porous organic-inorganic hybrid materials with coordinatively unsaturated metal sites or to coordinatively unsaturated metal sites of porous organic-inorganic mesoporous materials. The porous organic-inorganic hybrid materials are polymer compounds formed by bonding core metal ions to organic ligands and have molecular-sized or mamo-sized pore structures, and the porous organic-inorganic mesoporous materials have coordinatively unsaturated metal sites and pores with a pore size of 2 to 50 nm by substituting dissimilar metals. Core metal precursors of the porous organic-inorganic hybrid materials are one or more metals selected from Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, Mg, Ca, Sr, Ba, Sc, Y, Al, Ga, In, Tl, Si, Ge, Sn, Pb, As, Sb and Bi, or compounds thereof.