Abstract:
The present invention relates to a biosensor using anisotropic biohybrid microparticles, and more specifically, to the biosensor that is capable of multi-detecting and targeting by two or more functional groups having selective directivity using a physicochemically compartmentalized anisotropic microparticle structure.
Abstract:
PURPOSE: A method for manufacturing a bio-hybrid metal nanoprobe for measuring surface-enhanced Raman scattering images is provided to manufacture a bio-hybrid metal nanoprobe for measuring surface-enhanced Raman scattering S images in which sensitivity and chemical stability are high, thereby using the metal nanoprobe as a surface-enhanced Raman scattering based bio imaging device. CONSTITUTION: A method for manufacturing a bio-hybrid metal nanoprobe for measuring surface-enhanced Raman scattering images comprises next steps. Seed metal nano particles are prepared. The seed metal nano particles and a Raman dye are heated or collected after mixing so that a metal nano-cluster including the seed metal nano particles and Raman dye is formed. The metal nano-cluster is coated with a protein or first hydrophilic polymer so that the metal nano-cluster is formed. The metal nano-cluster coated with the protein or first hydrophilic polymer is mixed with a second polymer solution so that a second polymer suspension including the metal nano-cluster is manufactured. The suspension is sprayed by an electricity hydraulic power spraying method so that the metal nano-cluster encapsulated by covering the nano-cluster with the second polymer. The encapsulated metal nano-cluster is heated or UV treated and a cross-linkage or non-cross-linkage is generated in between the second polymers covering the metal nano-cluster so that a metal nano-cluster-second polymer network is formed. [Reference numerals] (AA) On-seed(6 to 13nm); (BB) Raman dye+Na3 - citrate+AgNO3; (CC) Stabilizing with protein; (DD) Raman dye+salt; (EE) Stabilizing with polymer; (FF) Silver nano particle plaster(60 to 150nm); (GG) Silver nano cluster(30 to 40nm)
Abstract:
본 발명은 라만 리포터가 부착된 금속 나노입자를 준비하고; 나노 크기의 그래핀 옥사이드를 준비하고; 상기 라만 리포터가 부착된 금속 나노입자 표면을 소수성 분자인 파이렌(pyrene)으로 개질하고; 그리고 상기 나노 크기 그래핀 옥사이드와 상기 소수성 분자인 파이렌으로 개질된 라만 리포터가 부착된 금속 나노 입자를 혼합하여 나노 크기 그래핀 옥사이드-금속 나노입자 클러스터를 형성하는 단계;를 포함하는, 표면 증강 라만 산란(SERS)기반 바이오센싱 및/또는 바이오이미지 측정용 나노 크기 그래핀 옥사이드-금속 나노입자 클러스터 구조의 SERS 나노프로브 제조방법을 제공한다.
Abstract:
본 발명은 이방성 바이오하이브리드 마이크로 입자(anisotropic biohybrid microparticles)를 이용한 바이오센서에 관한 것으로, 보다 상세하게는 물리화학적으로 구획화 (Compartmentalization)된 이방성 마이크로입자 구조체를 이용하여 선택적인 방향성을 가지는, 두 가지 이상의 작용기에 따른 다중 검출 및 표적화 (Targeting)가 가능한 바이오센서에 관한 것이다.
Abstract:
본 발명은 자극반응성 기계적 동작 활성화를 위한 이방성 나노구조체, 이의 제조방법 및 상기 이방성 나노구조체의 용도에 관한 것으로, 보다 상세하게는 물리적 또는 화학적으로 가교결합이 가능한 자극반응성 고분자와 자극 비반응성 고분자를 이용해서 전기수력적 공동분사 방법으로 물리화학적으로 구획화되고, 외부 자극에 의한 각 구획들이 상이한 기계적 동작 활성화를 구현하는, 자극반응성 기계적 동작 활성화를 위한 이방성 나노섬유 구조체, 상기 이방성 나노섬유 구조체의 제조 방법, 및 상기 이방성 나노섬유 구조체를 이용한 약물 전달 및 조직 공학으로의 용도에 관한 것이다.
Abstract:
본 발명은 시드(seed) 금속 나노입자를 준비하고; 상기 시드 금속 나노입자와 라만 염료를 혼합하고 가열 또는 응집하여 상기 시드 금속 나노입자와 라만 염료를 포함하는 금속 나노클러스터(nanocluster)를 형성하고; 상기 금속 나노클러스터를 단백질 또는 제 1친수성 폴리머로 코팅하여 안정화된 금속 나노클러스터를 만들고; 상기 단백질 또는 제 1친수성 폴리머로 코팅된 금속 나노클러스터를 제2폴리머 용액과 혼합하여 상기 금속 나노클러스터를 포함하는 제 2폴리머 현탁액을 제조하고; 상기 현탁액을 전기수력적 분사법에 의해 분사하여 상기 제 2폴리머로 상기 금속 나노 클러스터를 둘러싸서 캡슐화된 금속 나노클러스터를 형성하고; 그리고 상기 제2 폴리머로 캡슐화된 금속 나노클러스터를 가열하거나 자외선 처리하여 상기 금속 나노클러스터를 둘러싸는 제2 폴리머 사이에 가교결합 또는 비가교결합을 발생시킴으로써 상기 금속 나노클러스터-제2 폴리머 네크워크를 형성하는; 단계를 포함하는 표면-증강 라만 산란(SERS) 이미지(image) 측정용 바이오하이브리드 금속 나노프로브의 제조방법을 제공한다.