Abstract:
An acoustic damping device comprising at least one (1) a shell having a cavity and having a first opening that communicates with the cavity and (2) an acoustic film attached to the shell and substantially spanning the opening, wherein the acoustic film has an array of through holes therein, the shell and acoustic film defining in at least part an active cavity and wherein the device is adapted to be mounted to a support.
Abstract:
A visible light transmissive card includes a security indicia that fluoresces under UV light. The card also includes at least one IR filter. The IR filter and/or another card layer that is substantially coextensive with a front card surface includes a component that also fluoresces under UV light. A UV blocking material is disposed between the security indicia and the UV-excitable component of the IR filter or other layer, so that the security indicia is clearly visible when the card is exposed to UV light. In some embodiments the UV blocking material is patterned to define (in combination with the fluorescing IR filter or another coextensive card layer) a secondary security indicia, which may be used in addition to or in place of the original security indicia. IR filter laminates used in the construction of such cards are also disclosed.
Abstract:
A film or tape has one of its major surfaces defined by microstructured features including a plurality of channels defined by spaced apart protrusions. The microstructured film is able to acquire liquids and to control the directional transport of such liquids for subsequent removal therefrom. The transport can be passive or active (i.e., caused or enhanced by an applied potential). The inventive microstructured films and tapes have applications in laminate floor assemblies (for spill removal) and industrial articles such as computer keyboards and other devices and assemblies that benefit from fluid removal. The invention also has application in evaporative and condensation applications. In one embodiment, at least one cross-channel is formed on the microstructured surface to join adjacent channels for liquid flow therebetween.
Abstract:
The present disclosure relates generally to decorative, damage-free articles, systems, and kits capable of providing sound dampening and of being hung on a vertical surface or wall.
Abstract:
A sound absorbing luminaire providing lighting for an interior space environment and managing the acoustics within the environment. The luminaire includes a frame holding an acoustic film and a lighting element, forming a resonant cavity between them. The acoustic film is used for absorbing sound within the resonant cavity, and the lighting element provides light from a light source, such as LEDs, through the acoustic film. An optical film can be mounted in the frame between the acoustic film and the lighting element for providing a desired distribution of light.
Abstract:
A film or tape has one of its major surfaces defined by microstructured features including a plurality of channels defined by spaced apart protrusions. The microstructured film is able to acquire liquids and to control the directional transport of such liquids for subsequent removal therefrom. The transport can be passive or active (i.e., caused or enhanced by an applied potential). The inventive microstructured films and tapes have applications in laminate floor assemblies (for spill removal) and industrial articles such as computer keyboards and other devices and assemblies that benefit from fluid removal. The invention also has application in evaporative and condensation applications. In one embodiment, at least one cross-channel is formed on the microstructured surface to join adjacent channels for liquid flow therebetween.
Abstract:
A sound absorbing luminaire providing lighting for an interior space environment and managing the acoustics within the environment. The luminaire includes a frame holding an acoustic film and a lighting element, forming a resonant cavity between them. The acoustic film is used for absorbing sound within the resonant cavity, and the lighting element provides light from a light source, such as LEDs, through the acoustic film. An optical film can be mounted in the frame between the acoustic film and the lighting element for providing a desired distribution of light.
Abstract:
A film or tape has one of its major surfaces defined by microstructured features including a plurality of channels defined by spaced apart protrusions. The microstructured film is able to acquire liquids and to control the directional transport of such liquids for subsequent removal therefrom. The transport can be passive or active (i.e., caused or enhanced by an applied potential). The inventive microstructured films and tapes have applications in laminate floor assemblies (for spill removal) and industrial articles such as computer keyboards and other devices and assemblies that benefit from fluid removal. The invention also has application in evaporative and condensation applications. In one embodiment, at least one cross-channel is formed on the microstructured surface to join adjacent channels for liquid flow therebetween.