Abstract:
The invention is directed to an extended radio-frequency identification (RFID) tag. The extended RFID tag includes an ultra-high frequency (UHF) RFID tag having a dipole antenna attached to a first surface of a substrate. The extended RFID tag further includes an antenna extension attached to the UHF RFID tag and overlapping at least a portion of the dipole antenna for electromagnetically coupling the antenna extension and the dipole antenna in operation. The extended RFID tag further includes an insulator positioned between the dipole antenna and the antenna extension to electrically isolate the dipole antenna from the antenna extension.
Abstract:
Some aspects of the present disclosure feature a system for sensing a change in environment comprising a MMR sensor and a reader. The MMR sensor is configured to be disposed in the environment. The MMR sensor comprises a magnetic bias layer, a resonator, a spacer, and an environmental change receptor. The reader is configured to measure a frequency characteristic of the MMR sensor after the environmental variable changes and the change to the environmental variable is evaluated based on the frequency characteristic.
Abstract:
The invention provides one or more signal line structures that produce an electromagnetic field having a magnitude of at least an interrogation threshold of a radio frequency identification (RFID) tag for a substantial portion of an interrogation region. The signal lines may be made from copper and laid across a shelf in a storage area. The electromagnetic field may cause the tag to backscatter radio frequency (RF) signals to an RFID reader via the signal line.
Abstract:
Various radio frequency identification (RFID) tags (12) are described that dynamically vary their resonant frequency to reduce or eliminate the potential effects of electromagnetic "tag-to-tag" coupling. An RFID tag, for example, includes a main antenna (14) tuned to a first resonant frequency, and switching circuitry (18) that dynamically changes the resonant frequency of the main antenna. The switching circuitry may selectively couple electrical elements, such as capacitive elements, inductive elements, or combinations thereof, to vary the resonant frequency of the RFID tag. The RFID tag may include a sensing circuit that determines when to selectively couple the electrical element to the main antenna to adjust the resonant frequency of the main antenna.
Abstract:
Some aspects of the present disclosure feature a sensing device comprising a magnetic bias layer, a resonator, a spacer, and a housing. The spacer includes an environmental change receptor. The thickness of the environmental change receptor rapidly increases in response to a change to an environment variable.
Abstract:
A device for verifying a location of a radio-frequency identification (RFID) tag on an item. One embodiment of the invention provides a device for verifying the location of an RFID tag on an item including: an item holder; and an RF antenna attached to the item holder, where the item holder includes a readable volume where the RF antenna can read or write to an RFID tag, and where the item holder includes a non-readable volume where the RF antenna cannot read or write to an RFID tag. The present invention also relates to methods of verifying the location of a radio-frequency identification (RFID) tag on an item.
Abstract:
The invention is directed to an extended radio-frequency identification (RFID) tag. The extended RFID tag includes an ultra-high frequency (UHF) RFID tag having a dipole antenna attached to a first surface of a substrate. The extended RFID tag further includes an antenna extension attached to the UHF RFID tag and overlapping at least a portion of the dipole antenna for electromagnetically coupling the antenna extension and the dipole antenna in operation. The extended RFID tag further includes an insulator positioned between the dipole antenna and the antenna extension to electrically isolate the dipole antenna from the antenna extension.
Abstract:
Some aspects of the present disclosure feature a sensing device comprising a magnetic bias layer, a resonator, a spacer, and a housing. The spacer includes an environmental change receptor. The thickness of the environmental change receptor rapidly increases in response to a change to an environment variable.
Abstract:
Some aspects of the present disclosure feature a system for sensing a change in environment comprising a MMR sensor and a reader. The MMR sensor is configured to be disposed in the environment. The MMR sensor comprises a magnetic bias layer, a resonator, a spacer, and an environmental change receptor. The reader is configured to measure a frequency characteristic of the MMR sensor after the environmental variable changes and the change to the environmental variable is evaluated based on the frequency characteristic.
Abstract:
The invention provides one or more signal line structures that produce an electromagnetic field having a magnitude of at least an interrogation threshold of a radio frequency identification (RFID) tag for a substantial portion of an interrogation region. The signal lines may be made from copper and laid across a shelf in a storage area. The electromagnetic field may cause the tag to backscatter radio frequency (RF) signals to an RFID reader via the signal line.