Abstract:
Techniques are described for inspection of films in order to detect Machine Direction Line (“MDL”) defects. An example system comprises a light source configured to provide a source of light rays, directed to a film product so that the light rays are incident to a surface of the film product at a non-perpendicular angle of incidence. An image capturing device is configured to generate an image of the film product by capturing a level of light intensity of the light rays exiting the film product in a plurality of image areas, each image area representing a line imaged across the film product that is perpendicular to a direction of manufacture of the film product. An image processing device is configured to process the image of the film product to provide an indication of the detection of one or more machine direction line (MDL) defects in the film product.
Abstract:
Techniques are described for maintaining synchronization of inspection data when a web roll is converted into intermediate smaller rolls prior to cutting the web into individual parts. A system comprises a database that stores anomaly data acquired from a manufactured web. The anomaly data specifies positions anomalies within a manufactured web relative to a set of fiducial marks on the manufactured web. A conversion processing line comprises a fiducial mark reader to output position information for the set of fiducial marks on the manufactured web, a slitter that cuts the manufactured web into slit rolls, and a fiducial mark printer to print a set of fiducial marks on each slit roll. A position monitoring system maintains spatial synchronization of the anomaly data by computing an updated position for the anomalies relative to the set of fiducial marks printed on the slit rolls.
Abstract:
An example system is described herein. The example system may include an inspection device comprising at least one image capture device, the at least one image capture device configured to capture a reference image of a sheet part. Additionally, the example system may include a processing unit configured to identify at least one primary point in the reference image and identify at least one secondary point in a mask image. The processing unit may transform the mask image based on the at least one primary point and the at least one secondary point. The processing unit may apply the transformed mask image to the reference image to identify an inspection region within the reference image, process the inspection region of the reference image to determine the quality of the sheet part, and output information indicative of the quality of the sheet part.
Abstract:
An example system is described herein. The example system may include an inspection device comprising at least one image capture device, the at least one image capture device configured to capture a reference image of a sheet part. Additionally, the example system may include a processing unit configured to identify at least one primary point in the reference image and identify at least one secondary point in a mask image. The processing unit may transform the mask image based on the at least one primary point and the at least one secondary point. The processing unit may apply the transformed mask image to the reference image to identify an inspection region within the reference image, process the inspection region of the reference image to determine the quality of the sheet part, and output information indicative of the quality of the sheet part.
Abstract:
Techniques are described for maintaining synchronization of inspection data when a web roll is converted into intermediate smaller rolls prior to cutting the web into individual parts. A system comprises a database that stores anomaly data acquired from a manufactured web. The anomaly data specifies positions anomalies within a manufactured web relative to a set of fiducial marks on the manufactured web. A conversion processing line comprises a fiducial mark reader to output position information for the set of fiducial marks on the manufactured web, a slitter that cuts the manufactured web into slit rolls, and a fiducial mark printer to print a set of fiducial marks on each slit roll. A position monitoring system maintains spatial synchronization of the anomaly data by computing an updated position for the anomalies relative to the set of fiducial marks printed on the slit rolls.