Abstract:
A light extraction film laminated to a glass substrate for organic light emitting diode (OLED) devices. The light extraction film includes a flexible substantially transparent film, a low index nanostructured layer applied to the film, and a high index planarizing backfill layer applied over the nanostructured layer. A glass substrate is laminated to the flexible substantially transparent film on a side opposite the nanostructured layer and including an ultra-low index region between the film and the glass substrate. The ultra-low index region is used to reduce optical losses occurring with the glass substrate.
Abstract:
A light extraction film having nanoparticles with engineered periodic structures. The light extraction film includes a substantially transparent substrate, low index one-dimensional or two-dimensional periodic structures on the substrate, and a high index planarizing backfill layer applied over the periodic structures. Light scattering nanoparticles are either applied in a layer over the periodic structures or included in the backfill layer.
Abstract:
A light extraction film having multi-periodic zones of engineered nanostructures. The light extraction film includes a flexible substrate, a layer of low index engineered nanostructures applied to the substrate, and a high index backfill layer applied over the nanostructures. The multi-periodic zones include a repeating zone of the nanostructures having multi-periodic characteristics. The repeating zone includes first and second sets of nanostructures having different periodic pitches. The multi-periodic zones can be used to enhance the light output and tune the angular luminosity of organic light emitting diode devices.
Abstract:
A light extraction film laminated to a glass substrate for organic light emitting diode (OLED) devices. The light extraction film includes a flexible substantially transparent film, a low index nanostructured layer applied to the film, and a high index planarizing backfill layer applied over the nanostructured layer. A glass substrate is laminated to the flexible substantially transparent film on a side opposite the nanostructured layer and including an ultra-low index region between the film and the glass substrate. The ultra-low index region is used to reduce optical losses occurring with the glass substrate.
Abstract:
A light extraction film having multi-periodic zones of engineered nanostructures. The light extraction film includes a flexible substrate, a layer of low index engineered nanostructures applied to the substrate, and a high index backfill layer applied over the nanostructures. The multi-periodic zones include a repeating zone of the nanostructures having multi-periodic characteristics. The repeating zone includes first and second sets of nanostructures having different periodic pitches. The multi-periodic zones can be used to enhance the light output and tune the angular luminosity of organic light emitting diode devices.
Abstract:
A light extraction film having nanoparticles with engineered periodic structures. The light extraction film includes a substantially transparent substrate, low index one-dimensional or two-dimensional periodic structures on the substrate, and a high index planarizing backfill layer applied over the periodic structures. Light scattering nanoparticles are either applied in a layer over the periodic structures or included in the backfill layer.