Abstract:
A packaging system for abrasive articles that includes a container portion sized to receive the abrasive articles. The system also includes a lid portion that removably couples to the container portion. The system also includes a rechargeable moisture control feature, housed within the packaging system. The rechargeable moisture control feature removes moisture from an atmosphere within the packaging system. The system also includes a moisture indicator that indicates whether moisture is present within the container portion.
Abstract:
According to various embodiment of the present disclosure, a bonded abrasive article precursor includes a curable composition. The curable composition includes a curative component. The curable composition further includes one or more resins. The curable composition further includes a plurality of shaped abrasive particles. The curable composition is curable in an amount of time in a range of from about 0.1 minutes to about 20 minutes at a temperature of about 25° C. to about 160° C.
Abstract:
A method of making abrasive particles includes exposing ceramic particles to an organosilane-derived plasma formed from components comprising an organosilane and oxygen to form plasma-modified ceramic particles; and contacting a coupling agent with the second plasma-treated ceramic particle to provide the abrasive particle. Abrasive particles preparable by the method and abrasive particles containing them are also disclosed.
Abstract:
A method of reusing a hub in an abrasive assembly is presented that includes removably coupling the abrasive wheel to a reusable hub. The abrasive wheel has an outer circumference and an inner circumference. The abrasive article has an inner circumference and an outer circumference. The method also includes abrading a worksurface by contacting the abrasive wheel to the worksurface. The reusable hub includes a coupling feature configured to directly couple to the abrasive article. The coupling feature includes an adhesive-free connection between the reusable hub and the abrasive wheel. The direct connection is a removable interlocking between the abrasive wheel and the reusable hub.
Abstract:
A method providing damping during an abrading operation is provided. The method includes removably coupling the abrasive wheel to a hub. The abrasive wheel has an outer circumference and an inner circumference. A layer of abrasive material extends between the inner and outer circumference. The method also includes abrading a worksurface by contacting the abrasive disc to the worksurface. The hub includes a housing and a plurality of damping units within the housing. The plurality of damping units are shaped to reduce vibrations during a grinding operation.
Abstract:
A system and method of simulating and optimizing industrial and other processes includes a computer that performs multivariate analysis of input variables and output variables to generate a data model of the operation of the process. For industrial applications, the input variables include process variables and the output variables include result variables from the operation of the industrial process. The data model determines contributions to changes in the output or result variables by the respective input or process variables and is provided to a predictive algorithm to identify parameter values for input or process variables expected to have a most significant impact on the output or result variables during performance of the process. The outputs of the predictive algorithm are parameter values that are provided as input or process variables to the industrial process for simulation or performance optimization or product recommendations/optimizations.
Abstract:
A system and method of simulating and optimizing industrial and other processes includes a computer that performs multivariate analysis of input variables and output variables to generate a data model of the operation of the process. For industrial applications, the input variables include process variables and the output variables include result variables from the operation of the industrial process. The data model determines contributions to changes in the output or result variables by the respective input or process variables and is provided to a predictive algorithm to identify parameter values for input or process variables expected to have a most significant impact on the output or result variables during performance of the process. The outputs of the predictive algorithm are parameter values that are provided as input or process variables to the industrial process for simulation or performance optimization or product recommendations/optimizations.
Abstract:
According to various embodiment of the present disclosure, a bonded abrasive article precursor includes a curable composition. The curable composition includes a curative component. The curable composition further includes one or more resins. The curable composition further includes a plurality of shaped abrasive particles. The curable composition is curable in an amount of time in a range of from about 0.1 minutes to about 20 minutes at a temperature of about 25° C. to about 160° C.
Abstract:
The present disclosure provides methods of making a vitreous bond abrasive article and a metal bond abrasive article. The methods include sequential steps. Step a) includes a subprocess including sequentially: i) depositing a layer of loose powder particles in a confined region; and ii) selectively applying heat via conduction or irradiation, to heat treat an area of the layer of loose powder particles. The loose powder particles include abrasive particles and organic compound particles, as well as vitreous bond precursor particles or metal particles. The layer of loose powder particles has substantially uniform thickness. Step b) includes independently carrying out step a) a number of times to generate an abrasive article preform comprising the bonded powder particles and remaining loose powder particles. Step c) includes separating remaining loose powder particles from the abrasive article preform. Step d) includes heating the abrasive article preform to provide the vitreous bond abrasive article comprising the abrasive particles retained in a vitreous bond material, or to provide the metal bond abrasive article. A method of making a metal bond abrasive optionally includes infusing an abrasive article preform with a molten lower melting metal and solidifying the molten lower melting metal to provide the metal bond abrasive article. The present disclosure further provides a vitreous bond abrasive article precursor and a metal bond abrasive article precursor. Also, methods including receiving, by a manufacturing device having a processor, a digital object specifying data for an abrasive article, and generating the abrasive article with the manufacturing device.
Abstract:
The present disclosure provides methods of making a vitreous bond abrasive article and a metal bond abrasive article. The methods include sequential steps. Step a) includes a subprocess including sequentially: i) depositing a layer of loose powder particles in a confined region; and ii) selectively applying heat via conduction or irradiation, to heat treat an area of the layer of loose powder particles. The loose powder particles include abrasive particles and organic compound particles, as well as vitreous bond precursor particles or metal particles. The layer of loose powder particles has substantially uniform thickness. Step b) includes independently carrying out step a) a number of times to generate an abrasive article preform comprising the bonded powder particles and remaining loose powder particles. Step c) includes separating remaining loose powder particles from the abrasive article preform. Step d) includes heating the abrasive article preform to provide the vitreous bond abrasive article comprising the abrasive particles retained in a vitreous bond material, or to provide the metal bond abrasive article. A method of making a metal bond abrasive optionally includes infusing an abrasive article preform with a molten lower melting metal and solidifying the molten lower melting metal to provide the metal bond abrasive article. The present disclosure further provides a vitreous bond abrasive article precursor and a metal bond abrasive article precursor.