Abstract:
An air filter includes filter media, a sensor, and circuitry coupled to the sensor, the circuitry configured to receive data from the sensor representative of the condition of the filter media and wirelessly transmit such data. The data may be received by a device with a display to use the information to present an indication of the filter media condition to a user.
Abstract:
This application describes a back-lit transmissive display including a transmissive display and a variable index light extraction layer optically coupled to a lightguide. The variable index light extraction layer has first regions of nanovoided polymeric material and second regions of the nanovoided polymeric material and an additional material. The first and second regions are disposed such that for light being transported at a supercritical angle in the lightguide, the variable index light extraction layer selectively extracts the light in a predetermined way based on the geometric arrangement of the first and second regions. The transmissive display may be a transmissive display panel or a polymeric film such as a graphic.
Abstract:
The present application is directed to an illumination device comprising a recycling cavity defined by recycling surfaces and a light emission surface; a light source within the cavity. A spectrum modifying layer is on a portion of the recycling surface, the spectrum modifying layer producing a spectral response different from the spectral response of the recycling surface. In some embodiments, the spectrum modifying layer shifts the spectral properties of the light being emitted from the light emission area from the spectral properties of the light source. In some embodiments, the spectrum modifying layer selectively absorbs a portion of light along the light source spectrum. In some embodiments, the spectrum modifying layer re-emits light at a wavelength longer than the wavelength it absorbed
Abstract:
The present disclosure describes materials and methods for creating electrical circuits on a non-conductive multilayer reflector substrate that can withstand reflow temperatures with low temperature solder pastes without creating distortions in the reflective substrate. The materials and methods include the use of a novel reflective mirror film based on silicone polyoxamide polymers or copolymers, which can retain reflectivity at these temperatures without damage to reflection or other film properties.
Abstract:
The present disclosure describes light delivery and distribution components of a ducted lighting system having a cross-section that includes at least one curved portion and a remote light source. The delivery and distribution system (i.e., light duct and light duct extractor) can function effectively with any light source that is capable of delivering light which is substantially collimated about the longitudinal axis of the light duct, and which is also preferably substantially uniform over the inlet of the light duct. The light delivery and distribution system can further function as a structural element that adjoins at least two walls of an illuminated enclosure or supports the shelves of illuminated shelving, joining the unit together.
Abstract:
The present disclosure describes light delivery and distribution components of a ducted lighting system having a cross-section that includes at least one curved portion and a remote light source. The delivery and distribution system (i.e., light duct and light duct extractor) can function effectively with any light source that is capable of delivering light which is substantially collimated about the longitudinal axis of the light duct, and which is also preferably substantially uniform over the inlet of the light duct.
Abstract:
The present application is directed to an illumination device comprising a recycling cavity defined by recycling surfaces and a light emission surface; a light source within the cavity. A spectrum modifying layer is on a portion of the recycling surface, the spectrum modifying layer producing a spectral response different from the spectral response of the recycling surface. In some embodiments, the spectrum modifying layer shifts the spectral properties of the light being emitted from the light emission area from the spectral properties of the light source. In some embodiments, the spectrum modifying layer selectively absorbs a portion of light along the light source spectrum. In some embodiments, the spectrum modifying layer re-emits light at a wavelength longer than the wavelength it absorbed.
Abstract:
A solid state light having a solid state light source such as LEDs, a light guide having an enclosed interior volume such as a bulb shape without vents, and a thermal guide. The light guide is coupled to the light source for receiving and distributing light from the light source. The thermal guide is at least partially contained within the interior volume with an air gap between a portion of the thermal guide and the light guide. The thermal guide provides for thermal conduction from the light source and dissipating heat through convection and radiation for cooling the light.
Abstract:
A backlight is disclosed and includes a visible light transmissive body primarily propagating light by TIR with a light input surface and a light output surface and a light guide portion and a light input portion. The light guide portion has a light reflection surface and a light emission surface. The light input portion has opposing side surfaces that are not parallel. One of the opposing surfaces is co-planar with either the light emission surface or the light reflection surface. A light source is disposed adjacent to the light input surface. The light source emits light into the light input portion. A reflective layer is disposed adjacent to or on the opposing side surfaces.
Abstract:
Disclosed herein is an optical device having a light source, a viscoelastic lightguide and a retroreflective film suitable for retroreflecting light. Light from the light source enters the viscoelastic lightguide and is transported within the lightguide by total internal reflection. The optical device may have a “front lit” configuration such that light being transported within the lightguide is extracted and retroreflected by the film toward a viewer. The optical device may have a “back lit” configuration such that light being transported within the lightguide is extracted and transmitted through the film toward a viewer. The retroreflective film may comprise beaded retroreflective sheeting such as that used in traffic signs and markings.