Abstract:
A structured film of a semi-crystalline polyolefin and a beta-nucleating agent is disclosed. The structured film has a backing and upstanding posts attached to the backing. At least a portion of the film typically includes beta-spherulites. In some embodiments, the backing is microporous while the upstanding posts have lower porosity. A method of making a structured film is also disclosed. The method includes extruding a melt of a polyolefin and a beta-nucleating agent in the presence of a tool to provide the structured film having upstanding posts on a backing and cooling at least a portion of the structured film to a temperature sufficient to form beta-spherulites. In some embodiments, the method further includes stretching the structured film containing beta-spherulites to provide micropores in the backing.
Abstract:
A laminate of an at least partially reticulated thermoplastic film joined to an extensible carrier. The reticulated thermoplastic film includes a backing with openings and discrete elements protruding from the first major surface. There are two discrete elements aligned in a first direction abutting opposite ends of any given opening. In a second direction perpendicular to the first direction, there is one discrete element between the given opening and an adjacent opening aligned in the second direction. Each portion of the thermoplastic backing around the given opening is plastically deformed in its lengthwise direction. A method of making a laminate is also disclosed. The method includes stretching a thermoplastic backing having a plurality of discrete elements in the first direction and laminating the backing to an extensible carrier. Subsequently stretching the laminate in a second direction forms a tear in the thermoplastic backing between two adjacent of the discrete elements.
Abstract:
A laminate of an at least partially reticulated thermoplastic film joined to an extensible carrier. The reticulated thermoplastic film includes a backing with openings and discrete elements protruding from the first major surface. There are two discrete elements aligned in a first direction abutting opposite ends of any given opening. In a second direction perpendicular to the first direction, there is one discrete element between the given opening and an adjacent opening aligned in the second direction. Each portion of the thermoplastic backing around the given opening is plastically deformed in its lengthwise direction. A method of making a laminate is also disclosed. The method includes stretching a thermoplastic backing having a plurality of discrete elements in the first direction and laminating the backing to an extensible carrier. Subsequently stretching the laminate in a second direction forms a tear in the thermoplastic backing between two adjacent of the discrete elements.
Abstract:
A tape includes a tape backing, an adhesive disposed on the tape backing, and a release surface for the adhesive. The release surface is a release coating disposed on at least a portion of a surface of the tape backing. The tape backing comprises a microporous film having an opaque, microporous region and at least one see-through region of lower porosity within the opaque, microporous region.
Abstract:
The composite elastic material (22) includes an elastic layer (4) and a structured film layer (15) having first and second opposing surfaces, with the second surface bonded to the elastic layer (4). The first surface of the structured film layer (15) has upstanding male fastening elements. The structured film layer (15) is gathered such that the upstanding male fastening elements point in multiple directions. The composite elastic material (22) can also be called a stretch-bonded laminate, which include an elastic layer (4) stretch-bonded to a second surface of a structured film layer (15). A first surface of the structured film layer (15), opposite the second surface, has upstanding male fastening elements. A process for making the composite elastic material (22) is also described. An absorbent article including the composite elastic material (22) is also described.
Abstract:
A multi-component fiber including at least first and second components. In some cases, at least a portion of the first component is opaque and microporous, and the second component is different from the first component. In some cases, at least a portion of the second component can be seen through at least a portion of the first component. A fiber having an opaque, microporous region and a see-through region of lower porosity is also disclosed. Fibrous webs including such fibers are also disclosed. In some cases, the fibrous web has at least one first region where first portions of the multiple fibers are opaque and microporous and at least one second region where second portions of the multiple fibers form a see-through region of lower porosity. Articles and laminates including the fibrous webs are disclosed. Methods of making the fibers, fibrous webs, and articles are also disclosed.
Abstract:
A principal film comprising a first polymeric component wherein the principal film has: (1) first and second major faces; (2) a land portion wherein the principal film is capable of thermally-induced self-forming; and (3) one or more modification zones, each comprising a central portion and a rim portion surrounding the central portion and being surrounded by land portion, wherein the average thickness of each rim portion is greater than the average thickness of the land portion surrounding the modification zone, the average thickness of each central portion is less than the average thickness of the land portion surrounding the modification zone and is greater than zero. Also methods for making such films and articles comprising such films.
Abstract:
A fastening tape, mechanical fastener, methods of making them, and personal hygiene articles including them are disclosed. The fastening tape includes a tape backing having a fastening portion, an adhesive disposed on the fastening portion, and a release surface for the adhesive. The release surface is a either a release tape attached along one of its edges to the tape backing or a release coating disposed on at least a portion of a surface of the tape backing. At least one of the tape backing or the release surface comprises a microporous film having an opaque, microporous region and at least one see-through region of lower porosity within the opaque, microporous region. The mechanical fastener includes such a microporous film and mechanical fastening elements on at least one surface. The at least one see-through region extends through the thickness of the microporous film.
Abstract:
The method includes unwinding a thermoplastic film from a roll, stretching the thermoplastic film in the machine direction so that it plastically deforms and decreases in width, slitting the stretched thermoplastic film into the multiple mechanical fastening strips, and winding the multiple mechanical fastening strips into multiple rolls. The thermoplastic film has a first surface and a second surface opposite the first surface, and the first surface of the thermoplastic film bears a plurality of male fastening elements. In the method, the unwinding, stretching, slitting, and winding are completed in-line.
Abstract:
A personal hygiene article includes a chassis with a topsheet, a backsheet, and an absorbent component between the topsheet and the backsheet. At least one portion of the personal hygiene article includes a microporous film having an opaque, microporous region and at least one see-through region of lower porosity within the opaque, microporous region. The microporous film can include a beta-nucleating agent or can have thermally induced phase separation caused by a diluent. A container includes a microporous film enclosing at least one personal hygiene article. The microporous film has an opaque, microporous region and at least one see-through region of lower porosity forming a window within the opaque, microporous region. Methods of making the personal hygiene article and container are also described.