Abstract:
An article is provided. The article includes a first transparent conductive oxide layer, a transparent metal layer on the first transparent conductive oxide layer, wherein a thickness of the transparent metal layer continuously decreases in a direction; and a second transparent conductive oxide layer on the transparent metal layer.
Abstract:
A transfer article with a thickness of less than 3 micrometers includes a first acrylate layer that is releasable from a metal or doped semiconductor release layer at a release value of from 2 to 50 grams/inch. The article includes a functional layer overlaying the first acrylate layer. The functional layer includes at least one microfractured inorganic layer about 3 nanometers to about 200 nanometers thick, which has a plurality of toolmarks interspersed with cracks.
Abstract:
A stretchable reflective color-shifting film comprises a stretchable transparent polymer layer; a semi-transmissive metal layer; a transparent spacer layer; a reflective metal layer; an adhesive layer; and a stretchable base film layer. When the film body is stretched by 25%, the peak total reflectance stretched is at 80% of the peak total reflectance when the film body is unstretched according to the Total Reflectivity Test.
Abstract:
An article is provided. The article includes an acrylate layer; a substrate overlaying the acrylate layer; and an adhesive layer between the acrylate layer and the substrate, wherein the adhesive layer includes germanium; wherein a release value between the acrylate layer and the adhesive layer is more than 200 g/inch.
Abstract:
In certain embodiments, the present disclosure relates to low emissivity films and articles comprising them. Other embodiments are directed to methods of reducing emissivity in an article comprising the use of low emissivity films. In some embodiments, the low emissivity films comprise a metal layer and a layer comprising a metal, a metal oxide, or a metal nitride adjacent each of the two sides of the metal layer. This type of assembly may serve various purposes, including being used as a sun control film. These constructions may be used, for example, on glazing units for reducing transmission of infrared radiation across the film in both directions.
Abstract:
Ultrathin and flexible electrical devices including circuit dies such as, for example, a capacitor chip, a resistor chip, and/or an inductor chip, and methods of making and using the same are provided. Circuit dies are attached to a major surface of a flexible substrate having channels. Electrically conductive traces are formed in the channels, self-aligned with the circuit dies, and in direct contact with the bottom surface of the circuit dies.
Abstract:
An article is provided. The article includes a transparent non-conducting layer, wherein a thickness of the transparent non-conducting layer continuously decreases in a first direction; and a transparent conducting layer on the transparent non-conducting layer, wherein a thickness of the transparent conducting layer continuously decreases in a direction opposite to the first direction. A thickness of the article is substantially uniform.
Abstract:
In certain embodiments, the present disclosure relates to low emissivity films and articles comprising them. Other embodiments are directed to methods of reducing emissivity in an article comprising the use of low emissivity films. In some embodiments, the low emissivity films comprise a metal layer and one or more zirconium nitride layers adjacent the metal layer. This type of assembly may serve various purposes, including being used as a sun control film. These constructions may be used, for example, on glazing units for reducing transmission of infrared radiation across the film in both directions.
Abstract:
Article comprising a substrate having a first major surface, wherein the major surface has an emissivity not greater than 0.2 and an exposed hardcoat on the first major surface, the hardcoat comprising binder, wherein the hardcoat has a thickness less than 200 nanometers and has a scratch rating of not greater than 1 as determined by the Linear Abrasion Test in the Examples. Articles described herein are useful, for example, for sun control window films having insulative properties. Such films are applied on the interior or exterior surfaces of automotive windows or building fenestrations
Abstract:
Article comprising a substrate having a first major surface, wherein the major surface has an emissivity not greater than 0.2 and an exposed hardcoat on the first major surface, the hardcoat comprising binder, wherein the hardcoat has a thickness less than 200 nanometers and has a scratch rating of not greater than 1 as determined by the Linear Abrasion Test in the Examples. Articles described herein are useful, for example, for sun control window films having insulative properties. Such films are applied on the interior or exterior surfaces of automotive windows or building fenestrations