Abstract:
A lightning protective seal cap comprising a seal cap that defines an interior, and a quantity of an uncured sealant that is curable by the application of actinic radiation so as to bind the seal cap to a fastener. The interior of the seal cap contains the quantity of uncured sealant, the seal cap is positionable over the fastener such that at least a portion of the fastener resides in the interior of the seal cap, and when the seal cap is in position over the fastener, the sealant containing seal cap prevents electrical arcing to the fastener from a lightning strike.
Abstract:
Provided are devices for applying actinic radiation to a curable resin. The devices include a housing having a front face, an actinic radiation source arranged within the housing such that actinic radiation emerges from the housing through the front face, and a proximity detector. The proximity detector is functionally connected to the actinic radiation source such that the actinic radiation source is shut off unless the proximity detector detects the presence of a surface within a safe distance from the front face. Optionally, the device includes a surface temperature sensor functionally connected to the actinic radiation source such that the actinic radiation source is shut off if the surface temperature sensor senses a surface temperature exceeding a maximum safe surface temperature.
Abstract:
A curable composition having a polythiol; at least one unsaturated compound comprising more than one carbon-carbon double bond, carbon-carbon triple bond, or a combination thereof; and a dye compound represented by formula (I). A crosslinked composition prepared from the curable composition, a method of making an at least partially crosslinked network, a method for indicating curing in a curable composition, and a method of stabilizing a curable composition comprising a polythiol and at least one unsaturated compound comprising more than one carbon-carbon double bond, carbon-carbon triple bond, or a combination thereof are also disclosed. Z is not reactive with the polythiol or unsaturated compound.
Abstract:
Compositions that are curable to polythioether polymers are provided, comprising: a) a dithiol monomer; b) a diene monomer; c) a radical cleaved photoinitiator; d) a peroxide; and e) an amine; where the peroxide and amine together are a peroxide-amine redox initiator. In some embodiments, the amine is a tertiary amine. In some embodiments, the amine is selected from the group consisting of dihydroxyethyl-p-toluidine, N,N-diisopropylethylamine, and N, N, N′, N″, N″-pentamethyl-diethylenetriamine. In some embodiments, the peroxide is selected from the group consisting of di-tert-butyl peroxide, methyl ethyl ketone peroxide, and benzoyl peroxide. In some embodiments, the composition may additionally comprise a polythiol monomer having three or more thiol groups.
Abstract:
A method of making a polymer network. The method includes providing a composition including a polythiol having more than one thiol group and a polyepoxide having more than one epoxide group, applying a solution including a photolatent base catalyst to a surface of the composition, and subsequently exposing the composition to light. Upon exposure to light, the photolatent base catalyst photochemically generates a first amine and at least partially cures at least the surface of the composition to form the polymer network.
Abstract:
A composition includes a photolatent amine, camphorquinone, and a coumarin sensitizer. The coumarin sensitizer is triplet photosensitizer and has an absorbance with a wavelength of maximum absorbance in a range from 390 nanometers to 510 nanometers. Compositions that further include a polymerizable material are also disclosed. Polymer networks preparable from such compositions and methods for making the polymer networks are also disclosed.
Abstract:
Provided are devices for applying actinic radiation to a curable resin. The devices include a housing having a front face, an actinic radiation source arranged within the housing such that actinic radiation emerges from the housing through the front face, and a proximity detector. The proximity detector is functionally connected to the actinic radiation source such that the actinic radiation source is shut off unless the proximity detector detects the presence of a surface within a safe distance from the front face. Optionally, the device includes a surface temperature sensor functionally connected to the actinic radiation source such that the actinic radiation source is shut off if the surface temperature sensor senses a surface temperature exceeding a maximum safe surface temperature.
Abstract:
The present disclosure provides methods and articles useful in sealing fasteners, including seal caps and in particular translucent or transparent seals or seal caps. In some embodiments, a seal cap which is optically translucent and optionally visibly transparent contains an uncured sealant, which is optionally optically translucent or visibly transparent, and is applied to a fastener. In some embodiments, the sealant is cured by application of actinic radiation to the sealant through the seal cap. In another aspect, a protected fastener construction is provided comprising: q) a fastener; r) a seal cap; and s) a cured sealant; wherein the sealant is optically translucent and optionally visibly transparent.
Abstract:
A curable composition having a polythiol; at least one unsaturated compound comprising two or more carbon-carbon double bonds, carbon-carbon triple bonds, or a combination thereof; and a dye compound represented by formula: A crosslinked composition prepared from the curable composition, a method for indicating curing in a curable composition, and a method of stabilizing a curable composition comprising a polythiol and at least one unsaturated compound comprising two or more carbon-carbon double bonds, carbon-carbon triple bonds, or a combination thereof are also disclosed.
Abstract:
A curable composition is provided comprising a urethane (meth)acrylate oligomer, a urethane (urea) phosphonate ad-hesion promoter, optionally reactive diluents, and an initiator. The use of the urethane (urea) phosphonate adhesion promotor provides better ageing stability and adhesion, as measured by T-peel adhesion test, than the use of other conventional adhesion promotors.