Abstract:
Methods of making an impression of dental tissue and dental articles (e.g. suitable for dental impression) are described. In one embodiment, the method comprises providing a hardenable composition, comprising a resin system, a filler system, and an initiator system wherein the hardenable composition is a hardenable self-supporting material having sufficient malleability to be formed into a shape. The method further comprises placing said hardenable composition in contact with dental tissue such that an impression of at least a portion of the dental tissue is formed in the hardenable composition. The method further comprises curing the hardenable composition comprising the impression.
Abstract:
An article may include a biodata page defining a perimeter including an edge and a hinge layer attached to at least a portion of the biodata page. The hinge layer comprises a cross-linked polyurethane. In some examples, the hinge layer may include a cross-linked thermoset polyurethane.
Abstract:
The disclosed aliphatic thermoplastic polyurethane composition is well suited for use in thin, flexible light directing articles to impart flexibility, toughness, or protection to the light directing articles that contain optically active elements. The disclosed aliphatic thermoplastic polyurethanes have improved thermostability at higher temperatures. Specifically, the disclosed aliphatic thermoplastic polyurethanes have a cross-over temperature greater than 110° C. In one embodiment, the cross-over temperature is greater than 130° C. In one embodiment, the cross-over temperature is less than 170° C. and a Tg greater than 35° C. and less than 70° C.
Abstract:
The disclosed aliphatic thermoplastic polyurethane composition is well suited for use in thin, flexible light directing articles to impart flexibility, toughness, or protection to the light directing articles that contain optically active elements. The disclosed aliphatic thermoplastic polyurethanes have improved thermostability at higher temperatures. Specifically, the disclosed aliphatic thermoplastic polyurethanes have a cross-over temperature greater than 110° C. In one embodiment, the cross-over temperature is greater than 130° C. In one embodiment, the cross-over temperature is less than 170° C. and a Tg greater than 35 C and less than 70 C.
Abstract:
The present application is directed to a method of using a hardenable dental article. The method can include providing the hardenable dental article; applying the hardenable dental article to a dental structure; customizing the shape of the hardenable dental article; and at least partially curing the hardenable dental article.
Abstract:
A method of using hardenable dental articles. The method can include placing a film (30) onto a dental structure (40) to cover at least a portion of the dental structure (40); providing a hardenable dental article (10); and applying the hardenable dental article (10) to the dental structure (40) covered by the film (30).
Abstract:
The disclosed aliphatic thermoplastic polyurethane composition is well suited for use in thin, flexible light directing articles to impart flexibility, toughness, or protection to the light directing articles that contain optically active elements. The disclosed aliphatic thermoplastic polyurethanes have improved thermostability at higher temperatures. Specifically, the disclosed aliphatic thermoplastic polyurethanes have a cross-over temperature greater than 110° C. In one embodiment, the cross-over temperature is greater than 130° C. In one embodiment, the cross-over temperature is less than 170° C. and a Tg greater than 35 C and less than 70 C.
Abstract:
The present application is directed to a method of using a hardenable dental article. The method can include providing the hardenable dental article; applying the hardenable dental article to a dental structure; customizing the shape of the hardenable dental article; and at least partially curing the hardenable dental article.
Abstract:
The disclosed aliphatic thermoplastic polyurethane composition is well suited for use in thin, flexible light directing articles to impart flexibility, toughness, or protection to the light directing articles that contain optically active elements. The disclosed aliphatic thermoplastic polyurethanes have improved thermostability at higher temperatures. Specifically, the disclosed aliphatic thermoplastic polyurethanes have a cross-over temperature greater than 110° C. In one embodiment, the cross-over temperature is greater than 130° C. In one embodiment, the cross-over temperature is less than 170° C. and a Tg greater than 35° C. and less than 70° C.
Abstract:
A light directing article comprises an acrylic polyvinyl acetal film to protect the optical elements of the light directing article. The acrylic polyvinyl acetal film has a Tg of at least 30° C. and comprises a (meth)acrylic polymer and polyvinyl acetal polymer. The acrylic polyvinyl acetal film is flexible and durable to mechanical deformation.