Abstract:
Described herein is a millable fluorinated block copolymer having at least one A block and at least one B block, wherein the A block is a semi-crystalline segment comprising repeating divalent monomeric units derived from TFE, HFP and VDF; and the B block is a segment comprising repeating dilvalent monomeric units derived from HFP and VDF; and wherein the millable fluorinated block copolymer has a modulus of 0.1 to 2.5 MPa at 100°C.
Abstract:
Partially fluorinated thermoplastic polymers comprising tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride are described. These THV-based fluoroplastic polymers have both a high melting temperature and a high melt flow index. Fibers, including core/sheath fibers prepared from such partially fluorinated thermoplastic polymers are also described.
Abstract:
There is provided a curable composition comprising a fluorinated block copolymer having (a) at least one A block, wherein the A block is a semi-crystalline segment comprising repeating divalent monomeric units derived from at least a fluorinated monomer; and (b) at least one B block, wherein the B block is a segment comprising repeating divalent monomeric units that comprises at least a fluorinated monomer and a nitrile-containing cure-site monomer.
Abstract:
A copolymer having tetrafluoroethylene units, hexafluoropropylene units, and units independently represented by formula in a range from 0.02 to 2 mole percent, based on the total amount of the copolymer. Rf is a linear or branched perfluoroalkyl group having from 1 to 8 carbon atoms and optionally interrupted by one or more -O- groups, z is 1 or 2, each n is independently from 1 to 6, and m is 0 or 1. The copolymer has a melt flow index in a range from 25 grams per 10 minutes to 35 grams per 10 minutes and has a combined number of unstable end groups and -CF 2 H end groups in a range from 25 per 10 6 carbon atoms up to 120 per 10 6 carbon atoms. The copolymer can be extruded to make articles, such as insulated cables. A method of making the copolymer is also disclosed.
Abstract:
A copolymer having tetrafluoroethylene units and second polymerized monomer units in a range from 0.2 to 1 percent by weight, based on the total weight of the copolymer. Rf is a linear or branched perfluoroalkyl group having from 1 to 8 carbon atoms and optionally interrupted by one or more -O- groups, n is independently from 1 to 6, and z is 0, 1, or 2. The copolymer has a melt flow index in a range from 0.02 grams per 10 minutes to 19.4 grams per 10 minutes. The copolymer can be extruded to make articles, such as insulated cables. A method of making the copolymer is also disclosed.
Abstract:
A copolymer having tetrafluoroethylene units, hexafluoropropylene units, and units independently represented by formula in a range from 0.02 to 2 mole percent, based on the total amount of the copolymer. Rf is a linear or branched perfluoroalkyl group having from 1 to 8 carbon atoms and optionally interrupted by one or more -O- groups, n is from 1 to 6, and m is 0 or 1. The copolymer has a melt flow index in a range from 25 grams per 10 minutes to 35 grams per 10 minutes and has up to 50 unstable end groups per 10 6 carbon atoms. The copolymer can be extruded to make articles, such as insulated cables. A method of making the copolymer is also disclosed.
Abstract:
Described herein is a composition comprising a fluorothermoplastic polymer, wherein the fluorothermoplastic polymer is derived from: (a) 60-85 mol% tetrafluoroethene; (b) 2-12 mol% hexafluoropropene; (c) 10-30 mol% vinylidene fluoride; (d) 0.2 to 5 mol% of a bromine-containing monomer. Such compositions can be used in multilayer constructions in, for example, fuel hose applications.
Abstract:
Described herein is a method of making a curable perfluoroelastomer, wherein the curable perfluoroelastomer comprises particles of a semi crystalline fluoropolymer, wherein the semi crystalline fluoropolymer is a TFE copolymer comprising no more than 1 wt% of at least one additional fluorinated monomer. The method comprises: (a) obtaining an amorphous perfluoropolymer and the particles of the semi crystalline fluoropolymer; and (c) dry blending the amorphous perfluoropolymer and the particles to form a curable perfluoroelastomer.
Abstract:
Method of reducing the amount of a fluorinated acid or its salts from a fluoropolymer, the method comprises: (i) providing a composition containing particles of the fluoropolymer, (ii) contacting the fluoropolymer particles with a treatment composition comprising at least one organic liquid; and, optionally, further comprising (iii) isolating, washing and subjecting the fluoropolymer to drying treatment, and wherein the fluoropolymer contains units derived from tetrafluoroethene (TFE) and is selected from the group of fluoroelastomers and the group of fluoropolymers having a melting point of less than 150 °C. Also provided are fluoropolymer and compositions containing such polymers that are essentially free of fluorinated acids and their salts.
Abstract:
A composition includes a thermoplastic fluoropolymer having vinylidene fluoride units in an amount of at least 30 mole percent and tetrafluoroethylene units in an amount of at least 5 mole percent. The thermoplastic fluoropolymer is free of hexafluoropropylene units or comprises less than 5 mole percent hexafluoropropylene units. The composition further includes at least one of a non-fluorinated, thermoplastic polymer as a major component of the composition or a polymer processing additive synergist. A method of reducing melt defects during the extrusion of a polymer is also provided. Use of the thermoplastic fluoropolymer as a polymer processing additive is also provided.