Abstract:
Direct-current-to-direct-current (DC-DC) power converters that include two or more multi-quadrant, multi-level, DC-DC, switching converter subcircuits, connected in parallel at respective input and output sides, so as to provide a multi-channel, multi-quadrant, multi-level configuration, are disclosed. The DC-DC power converters further include a control circuit configured to control the switching converter subcircuits so that corresponding switching semiconductors in each of the switching converter subcircuits are switched in an interleaved manner. In some embodiments, each of the switching converter subcircuits is a three-level, neutral-point-clamped, four-quadrant DC-DC converter circuit. In other embodiments, each of the switching converter subcircuits is a three-level, neutral-point-clamped, two-quadrant DC-DC converter circuit. In any of these embodiments, a filter capacitor may be connected between across a pair of output terminals at the output sides of the switching converter subcircuits.
Abstract:
A multi-phase power converter includes two or more multi-phase, bi-directional, multi-level, switching power converter subcircuits, connected in parallel at respective AC and DC sides, so as to provide a multi-channel, bi-directional, multi-level configuration. The AC sides of the switching converter subcircuits are directly coupled to one another and to a multi-phase AC input via series interface reactors, and the DC sides of the switching converter subcircuits are directly connected to one another and to a common split-capacitor bank at each level of the multi-level outputs of the switching converter subcircuits. A control circuit is configured to selectively control one or more switching semiconductor devices in each of the switching converter subcircuits. In some embodiments, the control circuit includes a closed-loop zero-sequence controller and a zero-sequence generator configured to eliminate circulating current among the switching converter subcircuits and to balance voltages across levels of the common split-capacitor bank.
Abstract:
A multi-phase power converter includes two or more multi-phase, bi-directional, multi-level, switching power converter subcircuits, connected in parallel at respective AC and DC sides, so as to provide a multi-channel, bi-directional, multi-level configuration. The AC sides of the switching converter subcircuits are directly coupled to one another and to a multi-phase AC input via series interface reactors, and the DC sides of the switching converter subcircuits are directly connected to one another and to a common split-capacitor bank at each level of the multi-level outputs of the switching converter subcircuits. A control circuit is configured to selectively control one or more switching semiconductor devices in each of the switching converter subcircuits. In some embodiments, the control circuit includes a closed-loop zero-sequence controller and a zero-sequence generator configured to eliminate circulating current among the switching converter subcircuits and to balance voltages across levels of the common split-capacitor bank.
Abstract:
Direct-current-to-direct-current (DC-DC) power converters that include two or more multi-quadrant, multi-level, DC-DC, switching converter subcircuits, connected in parallel at respective input and output sides, so as to provide a multi-channel, multi-quadrant, multi-level configuration, are disclosed. The DC-DC power converters further include a control circuit configured to control the switching converter subcircuits so that corresponding switching semiconductors in each of the switching converter subcircuits are switched in an interleaved manner. In some embodiments, each of the switching converter subcircuits is a three-level, neutral-point-clamped, four-quadrant DC-DC converter circuit. In other embodiments, each of the switching converter subcircuits is a three-level, neutral-point-clamped, two-quadrant DC-DC converter circuit. In any of these embodiments, a filter capacitor may be connected between across a pair of output terminals at the output sides of the switching converter subcircuits.