Abstract:
The present invention is concerned with the operation of a battery energy storage system (BESS) connected to an electric power system. The upper and lower state-of-charge (SoC) set-points of the BESS are adapted based on the analysis of the historical frequency data of the power system. A time dependent modulation function is determined for the upper and lower SoC set-points which avoids unwanted charging and discharging events.
Abstract:
The present invention is concerned with the operation of a battery energy storage system (BESS) connected to an electric power system. The upper and lower state-of-charge (SoC) set-points of the BESS are adapted based on the analysis of the historical frequency data of the power system. A time dependent modulation function is determined for the upper and lower SoC set-points which avoids unwanted charging and discharging events.
Abstract:
Es wird eine Batteriespeichersystem und ein Verfahren zum Betrieb eines Batteriespeichersystems angegeben, welches Batteriespeichersystem einen Umrichter (1) für Gleich- und Wechselrichterbetrieb zur Ankopplung an ein elektrisches Wechselspannungsnetz aufweist. Zu Vermeidung einer tiefen Entladung sowie eines schnell wechselnden Lade-Entlade-Zyklusses ist eine erste und eine zweite Gleichstromstellereinheit (2, 3) vorgesehen, wobei jede Gleichstromstellereinheit (2, 3) einen bidirektionalen Gleichstromsteller (5, 6) und eine mit dem jeweiligen Eingang des zugehörigen bidirektionalen Gleichstromstellers (5, 6) verbundene Batterie (8, 9) aufweist und die Ausgänge der bidirektionalen Gleichstromsteller (5, 6) mit der Gleichspannungsseite des Umrichters (1) und parallel miteinander verbunden sind. Bei Erreichen des ersten Grenzwertes (LZ1) des Ladezustandes der Batterie (8) der ersten Gleichstromstellereinheit (2) bis zum Erreichen des zweiten Grenzwertes (LZ2) des Ladezustandes der Batterie (8) der ersten Gleichstromstellereinheit (2) oder bei Erreichen des zweiten Grenzwertes (LZ2) des Ladezustandes der Batterie (9) der zweiten Gleichstromstellereinheit (3) bis zum Erreichen des ersten Grenzwertes (LZ1) des Ladezustandes der Batterie (9) der zweiten Gleichstromstellereinheit (3) und bei Erreichen des ersten Schwellwertes (f1) wird elektrische Energie aus der Batterie (8) der ersten Gleichstromstellereinheit (2) über den bidirektionalen Gleichstromsteller (5) der ersten Gleichstromstellereinheit (2) und den Umrichter (1) in das elektrische Wechselspannungsnetz eingespeist. Ferner wird bei Erreichen des ersten Grenzwertes (LZ1) des Ladezustandes der Batterie (8) der ersten Gleichstromstellereinheit (2) bis zum Erreichen des zweiten Grenzwertes (LZ2) des Ladezustandes der Batterie (8) der ersten Gleichstromstellereinheit (2) oder bei Erreichen des zweiten Grenzwertes (LZ2) des Ladezustandes der Batterie (9) der zweiten Gleichstromstellereinheit (3) bis zum Erreichen des ersten Grenzwertes (LZ1) des Ladezustandes der Batterie (9) der zweiten Gleichstromstellereinheit (3) und bei Erreichen des zweiten Schwellwertes (f2) elektrische Energie aus dem elektrischen Wechselspannungsnetz über den Umrichter (1) und den bidirektionalen Gleichstromsteller (6) der zweiten Gleichstromstellereinheit (3) in die Batterie (9) der zweiten Gleichstromstellereinheit (3) eingespeist.