Abstract:
An automatic lubricator for lubricating an object is provided. The lubricator includes a housing with a coupling section configured to couple with a lubricant container containing a lubricant, wherein the lubricant container comprises a rotatable shaft with a piston to dispense the lubricant from an output of the lubricant container. The lubricator further includes an electric motor configured to drive the rotatable shaft of the lubricant container during at least one lubrication action, such that at least a part of the lubricant is dispensable from the lubricant container during the at least one lubrication action. The lubricator further includes at least one sensor arranged within the housing and configured to provide a sensor signal indicative of a distance between the at least one sensor and the piston of the lubricant container, and a control circuitry configured to determine, based on the sensor signal of the at least one sensor, at least one lubrication parameter indicative of the at least one lubrication action
Abstract:
An automatic lubrication system for lubricating an object is provided, which includes a lubricant container configured to contain a lubricant and including a rotatable shaft with a piston to dispense the lubricant from an output of the lubricant container, a housing with a coupling section coupled with the lubricant container, an electric motor configured to drive the rotatable shaft of the lubricant container during at least one lubrication action, such that at least a part of the lubricant is dispensable from the lubricant container during the at least one lubrication action, at least one capacitive sensor including at least one electrode, wherein the at least one capacitive sensor is arranged at a wall of the lubricant container and configured to provide at least one sensor signal indicative of a capacitance in a vicinity of the at least one electrode, and a control circuitry configured to determine, based on the at least one sensor signal of the at least one capacitive sensor, at least one lubrication parameter indicative of the at least one lubrication action.
Abstract:
An automatic lubricator for lubricating an object is provided. The lubricator includes a housing with a coupling section configured to couple with a lubricant container containing a lubricant, wherein the lubricant container comprises a rotatable shaft with a piston to dispense the lubricant from an output of the lubricant container. The lubricator further comprises an electric motor configured to drive the rotatable shaft of the lubricant container, such that at least a part of the lubricant is dispensable from the lubricant container, at least one sensor configured to provide a sensor signal indicative of at least one of a force exerted by the electric motor onto the rotatable shaft and a force exerted by the lubricant onto the container, and a control circuitry configured to determine a blockage of the output of the lubricant container based on the sensor signal of the at least one sensor.
Abstract:
A condition monitoring device and monitoring system in one form includes an enclosure being shaped into a form of a portable tool for daily use, including a part for performing daily use functionality and being adapted to be carried by a user; and at least one sensor block being housed in the enclosure, being adapted for measuring data produced by a machine. The condition monitory device can be included in a system of multiple devices. The enclosure can take many forms including but not limited to a writing element, a memory unit (such as but not limited to a memory stick), and a screwdriver. The device can include a sensor block and a communication block. In some forms the device can be a mobile phone. The device can be included in a system that includes a server for processing signals, and/or a portable device that includes a processor.
Abstract:
The subject of the invention is a method and a device for determination of a torsional deflection of a rotation shaft in the electromechanical drivetrain. The method uses a current and a voltage signals measurement of the driving electrical machine and an angular speed measurement of the shaft of the drivetrain and includes the step of measuring of a voltage UDC of the DC link unit of a converter; the step of calculating a value of a load torque Tload of the driving electrical machine; the step of detecting of an oscillation OSC(Tload) in the load torque Tload and calculation magnitudes of characteristic frequencies of Fast Fourier Transform FFT(UDC) of the voltage UDC of DC link unit; the step of determining of a timestamp indicators tTload for oscillations OSC(Tload) and tFFT of UDC for magnitudes of characteristic frequencies of FFT(UDC) of the voltage UDC of DC link unit; the step of comparing the value of the timestamp indicators tTload and tFFT and determining a torsional deflection of the rotation shaft if tTload
Abstract:
The subject of the invention is a method and a device for determination of a torsional deflection of a rotation shaft in the electromechanical drivetrain. The method uses a current and a voltage signals measurement of the driving electrical machine and an angular speed measurement of the shaft of the drivetrain and includes the step of measuring of a voltage UDC of the DC link unit of a converter; the step of calculating a value of a load torque Tload of the driving electrical machine; the step of detecting of an oscillation OSC(Tload) in the load torque Tload and calculation magnitudes of characteristic frequencies of Fast Fourier Transform FFT(UDC) of the voltage UDC of DC link unit; the step of determining of a timestamp indicators tTload for oscillations OSC(Tload) and tFFT of UDC for magnitudes of characteristic frequencies of FFT(UDC) of the voltage UDC of DC link unit; the step of comparing the value of the timestamp indicators tTload and tFFT and determining a torsional deflection of the rotation shaft if tTload
Abstract:
Method and apparatus for measuring current of phases a, b, c and voltage of the DC link; determining inverter switch states of the inverter and rectifier switch states of the rectifier for each phase a, b, c; generating a trigger signal when the value of the inverter switch states of the inverter for each phase a, b, c have an equal values and determining a triggered time duration for the trigger signal; determining the rectifier switch states of the rectifier for each phase a, b, c at the triggered time duration and calculation current of the phase a, b, c and voltage of the DC link at the triggered time duration; reconstructing the DC link current at the triggered time duration; calculating an indicator ERS for the DC link voltage at the triggered time duration; calculating a total DC link capacitance C and comparing it with the initial DC link capacitance.
Abstract:
An automatic lubricator for lubricating an object is described, which comprises a housing with a coupling section configured to couple with a lubricant container containing a lubricant, wherein the lubricant container comprises a rotatable shaft with a piston to dispense the lubricant from an output of the lubricant container. The lubricator further comprises an electric motor configured to drive the rotatable shaft of the lubricant container during at least one lubrication action, such that at least a part of the lubricant is dispensable from the lubricant container during the at least one lubrication action, and a control circuitry for controlling the electric motor. Therein, the control circuitry is configured to determine a back electromotive force, BEMF, generated by the electric motor during at least a part of the at least one lubrication action, and to determine, based on the determined BEMF, at least one lubrication parameter indicative of the at least one lubrication action.
Abstract:
An automatic lubricator for lubricating an object is described, which comprises a housing with a coupling section configured to couple with a lubricant container containing a lubricant, wherein the lubricant container comprises a rotatable shaft with a piston to dispense the lubricant from an output of the lubricant container. The lubricator further comprises an electric motor configured to drive the rotatable shaft of the lubricant container during at least one lubrication action, such that at least a part of the lubricant is dispensable from the lubricant container during the at least one lubrication action, and a power supply configured to supply the electric motor with a supply current during the at least one lubrication action. The lubricator further comprises a control circuitry configured to acquire a current signal indicative of the supply current over time during at least a part of the at least one lubrication action, determine a periodicity of the acquired current signal, and determine, based on the determined periodicity, at least one lubrication parameter indicative of the at least one lubrication action.