Method for calibrating touchscreen panel with industrial robot and system, industrial robot and touchscreen using the same

    公开(公告)号:US10606410B2

    公开(公告)日:2020-03-31

    申请号:US16048773

    申请日:2018-07-30

    Applicant: ABB Schweiz AG

    Abstract: A method for calibrating a touchscreen panel and the system, the industrial robot and the touchscreen panel using the same. The method including the steps of: (a) defining at least one area of the touchscreen with predetermined accuracy for position measuring; (b) recording a plurality of kinematic parameters of the industrial robot on a plurality of first touch points on the at least one area of the touchscreen; (c) recording a plurality of first position values on the plurality of first touch points on the at least one area of the touchscreen; (d) determining a first calibration data for the kinematic model of the industrial robot using the kinematic parameters and using the first position values; (e) computationally correcting errors of the kinematic model of the industrial robot using the first calibration data; (f) recording a plurality of second position values on a plurality of second touch points on the at least one area with at least a portion of its border extending outwards; (g) determining a second calibration data for the touchscreen using the kinematic parameters and using the second position values; (h) computationally correcting errors of position measurement of the touchscreen using the second calibration data; and iteratively repeating the steps (b) through (h) for different postures of the industrial robot until the iteration step no longer results in significant improvement of the error correction of the kinematic model of the industrial robot.

    METHOD FOR CALIBRATING TOUCHSCREEN PANEL WITH INDUSTRIAL ROBOT AND SYSTEM, INDUSTRIAL ROBOT AND TOUCHSCREEN USING THE SAME

    公开(公告)号:US20180364866A1

    公开(公告)日:2018-12-20

    申请号:US16048773

    申请日:2018-07-30

    Applicant: ABB Schweiz AG

    Abstract: A method for calibrating a touchscreen panel and the system, the industrial robot and the touchscreen panel using the same. The method including the steps of: (a) defining at least one area of the touchscreen with predetermined accuracy for position measuring; (b) recording a plurality of kinematic parameters of the industrial robot on a plurality of first touch points on the at least one area of the touchscreen; (c) recording a plurality of first position values on the plurality of first touch points on the at least one area of the touchscreen; (d) determining a first calibration data for the kinematic model of the industrial robot using the kinematic parameters and using the first position values; (e) computationally correcting errors of the kinematic model of the industrial robot using the first calibration data; (f) recording a plurality of second position values on a plurality of second touch points on the at least one area with at least a portion of its border extending outwards; (g) determining a second calibration data for the touchscreen using the kinematic parameters and using the second position values; (h) computationally correcting errors of position measurement of the touchscreen using the second calibration data; and iteratively repeating the steps (b) through (h) for different postures of the industrial robot until the iteration step no longer results in significant improvement of the error correction of the kinematic model of the industrial robot.

    ROBOTIC ADDITIVE MANUFACTURING APPARATUSES, SYSTEMS AND METHODS

    公开(公告)号:US20170351245A1

    公开(公告)日:2017-12-07

    申请号:US15687201

    申请日:2017-08-25

    Applicant: ABB Schweiz AG

    Abstract: One exemplary embodiment is a method comprising generating robot control code from one or more files including part geometry parameters, material addition parameters, and robot system parameters. The robot control code includes instructions to control position and material output of an additive manufacturing tool adjustable over six degrees of freedom. The method includes simulating execution of the robot control code to generate a virtual part file including virtual part geometry parameters and material addition parameters, analyzing the virtual part geometry parameters and material addition parameters relative to the one or more files, and executing the robot control code with the controller to produce the part with robot system if the analyzing indicates that the virtual part satisfies one or more conditions.

Patent Agency Ranking