Abstract:
A method for generating corrected measured current in an Intelligent Electronic Device (IED) that is a true representation of primary current in an electrical network is disclosed. The method uses regression and a first threshold on measured sampled values from CT to detect a deviation instance that indicates a possibility of saturation. Wavelet and second threshold based detection of instances of saturation is then done. Then a regression based correction that uses a dynamic correction factor is implemented in real time to obtain corrected sampled values i.e. corrected measured current. Ending of correction is done based upon a predetermined selection criterion, The generated corrected measured current is used for protection and control functions in the IED. A CT output re-generation module as a functional module in the IED for implementing the method as described above is also disclosed.
Abstract:
The invention relates to the field of power distribution in a protection relay. The invention is a self-powered protection relay adapted to supply power to itself from a power line and to measure current in a power line with at least one current sensor connected in the power line, to power itself and to analyze the measured current for providing electrical protection by generating a trip signal to operate a circuit breaker connected in the power line. The self-powered protection relay comprises at least two modules for analyzing the measured current in the power line and for providing electrical protection by generating trip signals based on the analyzed measured currents; and a power management unit for programmable controlling of supply of power to a first module and a second module from the various modules of the protection relay. The trip signal to operate the circuit breaker connected in the power line is generated by logical combination of the trip signals from the at least two modules.
Abstract:
In aspects, the present invention discloses a method for communicating with a plurality of field devices using a remote terminal unit. The plurality of field devices includes a first set of field devices and a second set of field devices capable of communicating using a first and second wireless communication protocols respectively. The method comprises scanning for a beacon message from a first field device, determining a corresponding wireless communication protocol associated from the first field device, identifying a first set of configuration blocks for communicating with the first field device based on a configuration schema file and the corresponding wireless communication protocol of the first field device, and building a protocol stack for use with a radio front end from the one or more radio front ends using the first set of configuration blocks, for communicating with the first field device from the plurality of field devices.
Abstract:
The present invention provides a method for time synchronizing one or more devices in a control network using a first device. The method comprises selecting a first device from information of the topology of the control network. The method further comprises sending a first set of packets to the second device, receiving a first set of delay requests in response to the first set of packets, and sending a first set of delay responses in response to the first set of delay requests. The method further comprises, determining a first set of forward times and first set of backward times. The method further comprises, determining a first minimum forward time and a first minimum backward time. Further the method comprises determining a first correction factor. The method also comprises, applying the first correction factor to a clock provided at the second device and storing the first correction factor.
Abstract:
The present invention provides a system and method for advising wireless computer networks on inter-network interferences during their life time. The method of the present invention initially observes initial channel utilization profiles along with corresponding time-slots of dynamic network elements and network characteristics of a first network and stores as historical channel utilization profiles. The initial transmission profiles an interfering second network are also recorded. The threshold transmission profiles are then recorded as historical transmission profiles. The aggregator determines interference patterns, by comparing historical channel utilization profiles with runtime threshold transmission profiles and advises and pre-warns appropriate network actions to a network manager of the first network on the interference prone zones. The system of the present invention includes a first network with a common multi-network interference observer, to advise on inter-network interferences.
Abstract:
The invention relates to a method for joining of a first field device to a wireless sensor actuator network using a configuration tool. The wireless sensor actuator network comprises a plurality of interconnected field devices and gateway for connecting the interconnected field devices to a plant automation network comprising controllers and network manager. The method comprises receiving device information associated with the first field device, transmitting a commissioning request for the first field device, the commissioning request comprising device information and geographical location information of the first field device, receiving commissioning information comprising a session key, a network key and routing information, and commissioning the first field device using the received commissioning information for joining the said field device to the wireless sensor actuator network.
Abstract:
The invention relates to a method for joining of a first field device to a wireless sensor actuator network using a configuration tool. The wireless sensor actuator network comprises a plurality of interconnected field devices and gateway for connecting the interconnected field devices to a plant automation network comprising controllers and network manager. The method comprises receiving device information associated with the first field device, transmitting a commissioning request for the first field device, the commissioning request comprising device information and geographical location information of the first field device, receiving commissioning information comprising a session key, a network key and routing information, and commissioning the first field device using the received commissioning information for joining the said field device to the wireless sensor actuator network.
Abstract:
In aspects, the present invention discloses a method for replacing a first field device with a second field device using a commissioning tool. The method comprising retrieving a device description file associated with the first field device, analyzing the device description file, generating a first object by mapping a parameters of the second field device to a parameter from the identified one or more parameters based on a first index and a second index, generating a configuration file associated with the second file device based on the device description file and the generated first object, and transmitting the configuration file to the second field device for commissioning operation of the second field device. The step of analyzing the device description file comprises identifying one or more parameters from the plurality of parameters for mapping based on a predetermined criteria.