Abstract:
The present invention relates to a method and a system for determining the relation between a local coordinate system located in the working range of an industrial robot (1) and a robot coordinate system. The method comprises: attaching a first calibration object (10) in a fixed relation to the robot, determining the position of the first calibration object in relation to the robot, locating at least three second calibration objects (14, 15, 16) in the working range of the robot, wherein at least one of the calibration objects is a male calibration object having a protruding part shaped as a sphere, and at least one of the calibration objects is a female calibration object comprising at least two nonparalIeI, inclining surfaces arranged to receive the sphere so that the sphere is in contact with the surfaces in at least one reference position, determining a reference position for each of the second calibration objects in the local coordinate system, for each second calibration object moving the robot until the sphere is in mechanical contact with the surfaces of the calibration object, reading the position of the robot when the sphere is in mechanical contact with all of the surfaces, and calculating the relation between the local coordinate system and the robot coordinate system based on the position of the first calibration object in relation to the robot, the reference positions of the second calibration objects in the local coordinate system, and the positions of the robot when the sphere is in mechanical contact with the surfaces of the second calibration objects.
Abstract:
The present invention relates to an apparatus and a method for automatically calibrating a linear track (20) along which a device is moving while it is performing work. The method comprises: moving a mechanical unit (18), provided with a first angle- measuring sensor (1) arranged for measuring an angle relative to the vertical line about a first measuring axis and a second angle-measuring sensor (2) arranged for measuring an angle relative to the vertical line about a second measuring axis essentially perpendicular to the measuring axis of the first angle-measuring sensor, along the track, receiving angular measurements from both angle-measuring sensors for a plurality of locations along the track, and calculating vertical changes in position along the length of the track for both sides of the track based on the received angular measurements from both angle-measuring sensors.
Abstract:
The present invention relates to a method and a system for determining the relation between a local coordinate system located in the working range of an industrial robot (1) and a robot coordinate system. The method comprises: attaching a first calibration object (10) in a fixed relation to the robot, determining the position of the first calibration object in relation to the robot, locating at least three second calibration objects (14, 15, 16) in the working range of the robot, wherein at least one of the calibration objects is a male calibration object having a protruding part shaped as a sphere, and at least one of the calibration objects is a female calibration object comprising at least two nonparalIeI, inclining surfaces arranged to receive the sphere so that the sphere is in contact with the surfaces in at least one reference position, determining a reference position for each of the second calibration objects in the local coordinate system, for each second calibration object moving the robot until the sphere is in mechanical contact with the surfaces of the calibration object, reading the position of the robot when the sphere is in mechanical contact with all of the surfaces, and calculating the relation between the local coordinate system and the robot coordinate system based on the position of the first calibration object in relation to the robot, the reference positions of the second calibration objects in the local coordinate system, and the positions of the robot when the sphere is in mechanical contact with the surfaces of the second calibration objects.
Abstract:
The present invention relates to a method and a system for determining the relation between a local coordinate system located in the working range of an industrial robot (1) and a robot coordinate system. The method comprises: attaching a first calibration object (10) in a fixed relation to the robot, determining the position of the first calibration object in relation to the robot, locating at least three second calibration objects (14, 15, 16) in the working range of the robot, wherein at least one of the calibration objects is a male calibration object having a protruding part shaped as a sphere, and at least one of the calibration objects is a female calibration object comprising at least two nonparalIeI, inclining surfaces arranged to receive the sphere so that the sphere is in contact with the surfaces in at least one reference position, determining a reference position for each of the second calibration objects in the local coordinate system, for each second calibration object moving the robot until the sphere is in mechanical contact with the surfaces of the calibration object, reading the position of the robot when the sphere is in mechanical contact with all of the surfaces, and calculating the relation between the local coordinate system and the robot coordinate system based on the position of the first calibration object in relation to the robot, the reference positions of the second calibration objects in the local coordinate system, and the positions of the robot when the sphere is in mechanical contact with the surfaces of the second calibration objects.
Abstract:
The present invention relates to a method and a system for determining the relation between a local coordinate system located in the working range of an industrial robot (1) and a robot coordinate system. The method comprises: attaching a first calibration object (10) in a fixed relation to the robot, determining the position of the first calibration object in relation to the robot, locating at least three second calibration objects (14, 15, 16) in the working range of the robot, wherein at least one of the calibration objects is a male calibration object having a protruding part shaped as a sphere, and at least one of the calibration objects is a female calibration object comprising at least two nonparalIeI, inclining surfaces arranged to receive the sphere so that the sphere is in contact with the surfaces in at least one reference position, determining a reference position for each of the second calibration objects in the local coordinate system, for each second calibration object moving the robot until the sphere is in mechanical contact with the surfaces of the calibration object, reading the position of the robot when the sphere is in mechanical contact with all of the surfaces, and calculating the relation between the local coordinate system and the robot coordinate system based on the position of the first calibration object in relation to the robot, the reference positions of the second calibration objects in the local coordinate system, and the positions of the robot when the sphere is in mechanical contact with the surfaces of the second calibration objects.