Abstract:
According to one aspect of the teachings herein, various feeder connection arrangements and architectures are disclosed, for collecting electricity from wind turbines in an offshore collection grid that operates at a fixed low frequency, e.g., at one third of the targeted utility grid frequency. Embodiments herein detail various feeder arrangements, such as the use of parallel feeder connections and cluster-based feeder arrangements where a centralized substation includes a common step-up transformer for outputting electricity at a stepped-up voltage, for low-frequency transmission to onshore equipment. Further aspects relate to advantageous generation arrangements, e.g., tower-based arrangements, for converting wind power into electrical power using, for example, medium-speed or high-speed gearboxes driving generators having a rated electrical frequency for full-power output in a range from about 50 Hz to about 150 Hz, with subsequent conversion to the fixed low frequency for off-shore collection.
Abstract:
A turbine-based energy generation system includes an electric generator and auxiliary load. A power system for the turbine-based energy generation system includes a main converter and an auxiliary converter. The main converter is operable to deliver power generated by the electric generator to a power collection system external to the turbine-based energy generation system when the main converter is coupled to the generator. The main converter is also operable to deliver power provided from the power collection system to the auxiliary converter when the main converter is decoupled from the generator. The auxiliary converter is operable to deliver power generated by the electric generator to the auxiliary load when the auxiliary converter is coupled to the generator. The auxiliary converter is also operable to deliver the power provided by the main converter from the power collection system to the auxiliary load when the auxiliary converter is decoupled from the generator.
Abstract:
According to one aspect of the teachings herein, a controller communicatively couples to and advantageously exploits a distributed control network of an industrial plant by, for example, using information received over the distributed control network to predict the value of one or more electrical parameters of an electrical distribution grid of the industrial plant, and to generate and transmit converter control commands based on the predicted value(s). These converter control commands target one or more converters located within the electrical distribution grid, each converter having an Active Front End or AFE that allows the reactive power consumption of the converter to be adjusted via the converter control commands.
Abstract:
A series injection device includes a power splitter coupled to two or more lines of an AC power system. The power splitter includes a coupling transformer for each phase of a single phase or polyphase AC circuit that includes the two or more lines. Each of the coupling transformers couples one of the phases of the two or more lines. The power splitter is configured to inject a first voltage of a first polarity into one or more of the two or more lines and inject a second voltage of a second polarity opposite the first polarity into at least one of the two or more lines via the same coupling transformers used to inject the first voltage. The first and the second voltages are controllable, and may or may not be independently variable.
Abstract:
According to one aspect of the teachings herein, a system for obtaining electricity from wind turbines provides advantageous operation with respect to offshore wind turbines where the size and weight of electricity generation and collection equipment are key considerations. The contemplated system includes an apparatus that is configured for collecting wind-generated electricity at a fixed low frequency and at a desired collection voltage, based on the advantageous configuration and use of a modular multilevel converter or MMC.
Abstract:
According to one aspect of the teachings herein, a system for obtaining electricity from wind turbines provides advantageous operation with respect to offshore wind turbines where the size and weight of electricity generation and collection equipment are key considerations. The contemplated system includes an apparatus that is configured for collecting wind-generated electricity at a fixed low frequency and at a desired collection voltage, based on the advantageous configuration and use of a modular multilevel converter or MMC.
Abstract:
According to one aspect of the teachings herein, various feeder connection arrangements and architectures are disclosed, for collecting electricity from wind turbines in an offshore collection grid that operates at a fixed low frequency, e.g., at one third of the targeted utility grid frequency. Embodiments herein detail various feeder arrangements, such as the use of parallel feeder connections and cluster-based feeder arrangements where a centralized substation includes a common step-up transformer for outputting electricity at a stepped-up voltage, for low-frequency transmission to onshore equipment. Further aspects relate to advantageous generation arrangements, e.g., tower-based arrangements, for converting wind power into electrical power using, for example, medium-speed or high-speed gearboxes driving generators having a rated electrical frequency for full-power output in a range from about 50 Hz to about 150 Hz, with subsequent conversion to the fixed low frequency for off-shore collection.
Abstract:
A series injection device includes a power splitter coupled to two or more lines of an AC power system. The power splitter includes a coupling transformer for each phase of a single phase or polyphase AC circuit that includes the two or more lines. Each of the coupling transformers couples one of the phases of the two or more lines. The power splitter is configured to inject a first voltage of a first polarity into one or more of the two or more lines and inject a second voltage of a second polarity opposite the first polarity into at least one of the two or more lines via the same coupling transformers used to inject the first voltage. The first and the second voltages are controllable, and may or may not be independently variable.
Abstract:
A turbine-based energy generation system includes an electric generator and auxiliary load. A power system for the turbine-based energy generation system includes a main converter and an auxiliary converter. The main converter is operable to deliver power generated by the electric generator to a power collection system external to the turbine-based energy generation system when the main converter is coupled to the generator. The main converter is also operable to deliver power provided from the power collection system to the auxiliary converter when the main converter is decoupled from the generator. The auxiliary converter is operable to deliver power generated by the electric generator to the auxiliary load when the auxiliary converter is coupled to the generator. The auxiliary converter is also operable to deliver the power provided by the main converter from the power collection system to the auxiliary load when the auxiliary converter is decoupled from the generator.