Abstract:
Methods, systems, and computer readable media for providing protection of DC building electrical systems are disclosed. According to one aspect, a system for over-current protection of direct current (DC) building electrical systems includes a DC bus for providing DC power to a building and multiple DC feeder conductors for providing DC power to multiple locations within the building. Each DC feeder conductor is connected to the DC bus via a DC protection module having a fuse, a normally closed switch connected in parallel with the fuse, and a circuit breaker connected in series with the fuse and switch, where the switch is controllable to be closed to protect the fuse against transient current conditions and controllable to be open after the transient current conditions have subsided to allow the fuse to operate normally.
Abstract:
A hybrid alternating current (AC)/direct current (DC) distribution system for multiple-floor buildings includes per-floor rectifiers for converting supply side AC to DC. Each rectifier is configured to supply a plurality of DC loads associated with one floor of a multiple-floor building. The system further includes per-floor DC busses, each of the DC busses being configured to distribute the DC to the DC loads its respective floor. The system further includes at least one AC bus for supplying AC power to AC loads in the building.
Abstract:
A hybrid alternating current (AC)/direct current (DC) distribution system for multiple-floor buildings includes per-floor rectifiers for converting supply side AC to DC. Each rectifier is configured to supply a plurality of DC loads associated with one floor of a multiple-floor building. The system further includes per-floor DC busses, each of the DC busses being configured to distribute the DC to the DC loads its respective floor. The system further includes at least one AC bus for supplying AC power to AC loads in the building.
Abstract:
Five or more level active neutral-point-clamped (ANPC) converters and operating methods thereof are disclosed. The five or more level ANPC converters may include upper and lower DC links, a neutral point, a converter output, a plurality of switching devices including upper and lower active neutral clamp switching devices, and at least one two-level cell connected to the output. Each of the two-level cells may include a floating capacitor and a bidirectional switch. In some examples, switches may be connected between the upper and lower DC links and the corresponding upper and lower active neutral clamp switching devices, and circuit breaking elements may be connected between the neutral point and the upper and lower active neutral clamp switching devices. In some examples, a bidirectional switch may be connected in parallel with each of the plurality of switching devices other than the upper and lower active neutral clamp switching devices.
Abstract:
Methods, systems, and computer readable media for managing the distribution of photovoltaic power in a multi-floor building are disclosed. According to one aspect, a method includes determining power requirements for each of a plurality of loads associated with a respective plurality of floors in a multi-floor building, wherein each of the plurality of floors includes a direct current (DC) distribution bus. The method further includes using a PV converter to supply a power output from a PV source to one or more of the plurality of loads via one or more respective DC distribution buses, wherein the power output is supplied to the one or more of the plurality of loads in an order such that each subsequent load is supplied at least a remaining portion of the power output after the power requirements of a previously supplied load is fully satisfied.