Abstract:
An energy generation system includes a turbine, an electric generator, a step-up transformer, and a converter. The turbine is operable to extract energy from a fluid flow and convert the extracted energy into mechanical energy. The electric generator is operable to convert the mechanical energy from the turbine into AC electrical energy. The step-up transformer is operable to transfer the AC electrical energy at a lower voltage from the electric generator to a higher voltage. The converter is operable to convert the AC electrical energy at the higher voltage to DC electrical energy. The converter includes a converter leg for a phase of the AC electrical energy. The converter leg has an upper arm with a first plurality of sub-modules and a lower arm with a second plurality of sub-modules. Each sub-module is operable to function as a controlled voltage source.
Abstract:
An energy generation system includes a turbine, an electric generator, a step-up transformer, and a converter. The turbine is operable to extract energy from a fluid flow and convert the extracted energy into mechanical energy. The electric generator is operable to convert the mechanical energy from the turbine into AC electrical energy. The step-up transformer is operable to transfer the AC electrical energy at a lower voltage from the electric generator to a higher voltage. The converter is operable to convert the AC electrical energy at the higher voltage to DC electrical energy. The converter includes a converter leg for a phase of the AC electrical energy. The converter leg has an upper arm with a first plurality of sub-modules and a lower arm with a second plurality of sub-modules. Each sub-module is operable to function as a controlled voltage source.
Abstract:
A modular converter is disclosed for a battery charging station, having at least two charging modules connected in parallel. Each of the charging modules can be configured for generating an output current I1, I2, I3 for charging a battery. Each charging module can have a local controller for controlling the charging module. Each local controller of a charging module can be configured for determining a global charging current I and for determining the output current I1, I2, I3 of the charging module.
Abstract:
An exemplary converter circuit has a converter unit with plural actuatable power semiconductor switches, and the DC voltage side of which is connected to a capacitive energy storage circuit. The capacitive energy storage circuit has at least one capacitive energy store and at least one snubber network for limiting the rate of current or voltage rise on the actuatable power semiconductor switches of the converter unit. In order to reduce undesirable oscillations in an overcurrent in the capacitive energy storage circuit, the capacitive energy storage circuit has at least one passive nonactuatable damping unit having a unidirectional current-flow direction, where the passive nonactuatable damping unit has a diode and a damping resistor.
Abstract:
An exemplary converter circuit has a converter unit with plural actuatable power semiconductor switches, and the DC voltage side of which is connected to a capacitive energy storage circuit. The capacitive energy storage circuit has at least one capacitive energy store and at least one snubber network for limiting the rate of current or voltage rise on the actuatable power semiconductor switches of the converter unit. In order to reduce undesirable oscillations in an overcurrent in the capacitive energy storage circuit, the capacitive energy storage circuit has at least one passive nonactuatable damping unit having a unidirectional current-flow direction, where the passive nonactuatable damping unit has a diode and a damping resistor.
Abstract:
An exemplary power electronics module includes a first power electronics element that generates a first heat flow during operation of the power electronics module, a second power electronics element that generates a second heat flow during operation of the power electronics module. The first cooler is in thermal contact with the first power electronics element to receive at least part of the first heat flow. The second cooler is in thermal contact with the second power electronics element to receive at least part of the second heat flow. A heat exchanger is configured to transmit at least part of the first heat flow and the second heat flow to a primary cooling flow and transfer heat flow in a thermally efficient manner. A magnitude of the heat flow is less than a total magnitude that is formed from a maximum first heat flow and a maximum second heat flow.
Abstract:
A modular converter is disclosed for a battery charging station, having at least two charging modules connected in parallel. Each of the charging modules can be configured for generating an output current I1, I2, I3 for charging a battery. Each charging module can have a local controller for controlling the charging module. Each local controller of a charging module can be configured for determining a global charging current I and for determining the output current I1, I2, I3 of the charging module.