Abstract:
The method of the invention is performed in a combiner box of a DC part of a PV plant before start-up and forms a measuring circuit in which at least one of the direction of a DC current, the polarity of a voltage or a ground fault is measured and in which the result of the measurement is used to determine an installation error in the DC part.
Abstract:
A box (SCB1) for combining n strings or m arrays of a DC part of a PV plant comprises a plurality of n DC inputs (21, 22, 23, 24) for electrical connection to the n strings or to a plurality of m DC inputs for electrical connection to the m arrays, at least n or m DC direction sensors for detecting the direction of direct currents (I S1 , I S2 , I S4 , I R ) conducted in the n or m DC inputs (21, …, 24) and a combiner control unit (SCCU). The DC direction sensors communicate their output signals to the combiner control unit. The combiner control unit communicates a first tripping signal to first switching units associated to the DC direction sensors for opening n-1 or m-1 of the n or m pairs of first switching units in order to interrupt the direct currents (I S1 , I S2 , I S4 ) between each of n-1 or m-1 DC inputs (21, 22, 24) and the two busbars when in a remaining one (23) of the DC inputs the direct current changes from a forward (I S3 ) to a first reverse current (I R ). This allows a fast localization and removal of a faulty string or array without any remarkable interruption of the PV plant and with small-sized switching units, typically with hybrid breakers. Thus the PV plant is distinguished by a high yield rate and a high reliability and can be installed and operated in a cost-efficient manner. Furthermore for reason of the small-sized switching units the combiner box can be realized as rail arrangement with a plurality of box-shaped modules which are attached to the rail arrangement.
Abstract:
A box (SCB1) for combining n strings or m arrays of a DC part of a PV plant comprises a plurality of n DC inputs (21, 22, 23, 24) for electrical connection to the n strings or to a plurality of m DC inputs for electrical connection to the m arrays, at least n or m DC direction sensors for detecting the direction of direct currents (IS1, IS2, IS4, IR) conducted in the n or m DC inputs (21, …, 24) and a combiner control unit (SCCU). The DC direction sensors communicate their output signals to the combiner control unit. The combiner control unit communicates a first tripping signal to first switching units associated to the DC direction sensors for opening n-1 or m-1 of the n or m pairs of first switching units in order to interrupt the direct currents (IS1, IS2, IS4) between each of n-1 or m-1 DC inputs (21, 22, 24) and the two busbars when in a remaining one (23) of the DC inputs the direct current changes from a forward (IS3) to a first reverse current (IR). This allows a fast localization and removal of a faulty string or array without any remarkable interruption of the PV plant and with small-sized switching units, typically with hybrid breakers. Thus the PV plant is distinguished by a high yield rate and a high reliability and can be installed and operated in a cost-efficient manner. Furthermore for reason of the small-sized switching units the combiner box can be realized as rail arrangement with a plurality of box-shaped modules which are attached to the rail arrangement.
Abstract:
An arc chamber (10) for a DC circuit breaker comprises an entry side (E) adapted to receive an electric arc (50), which was generated outside of the arc chamber (10) and which propagates in a forward direction (F), a plurality of stacked splitter plates (11a … 11f), and at least one inhibitor barrier (20a, 20b). The at least one inhibitor barrier (20a, 20b) is arranged on the entry side (E) to inhibit a reverse propagation of the electric arc (50) out of the arc chamber (10) in a reverse direction (R). DC circuit breaker comprising an arc chamber. Use of an arc chamber with a circuit breaker in a DC electrical system.
Abstract:
A method of producing a three-dimensional object (28), the method comprising providing an object model (96) of the three-dimensional object; providing a candidate support structure model (98) of one or more support structures (30) for the three-dimensional object based on the object model; selecting (100) a removal strategy (42) among a plurality of candidate removal strategies for removal of the one or more support structures from the three-dimensional object based on the object model; modifying (106) the candidate support structure model based on the selected removal strategy to provide a modified support structure model (108); forming (112) the three-dimensional object based on the object model, and the one or more support structures supporting the three-dimensional object based on the modified support structure model, by means of additive manufacturing; and removing (114) the one or more support structures from the three-dimensional object based on the selected removal strategy.
Abstract:
A method for simplifying short circuit failure mode (SCFM) transitions in a power electronics module. The method includes keeping at least one switch (101, 102, 103, 104) in closed position by means of a signal (109) supplied by a gate unit (110). Upon a failure of a first semiconductor chip (105) during which the failed chip enters an SCFM, the switch (102, 103, 104) is opened, wherein the gates of the second semiconductor chips (106, 107, 108) become floating. Thereby the blocking voltage of the semiconductor chips is reduced.
Abstract:
A box (SCB1) for combining n strings or m arrays of a DC part of a PV plant comprises a plurality of n DC inputs (21, 22, 23, 24) for electrical connection to the n strings or to a plurality of m DC inputs for electrical connection to the m arrays, at least n or m DC direction sensors for detecting the direction of direct currents (IS1, IS2, IS4, IR) conducted in the n or m DC inputs (21, …, 24) and a combiner control unit (SCCU). The DC direction sensors communicate their output signals to the combiner control unit. The combiner control unit communicates a first tripping signal to first switching units associated to the DC direction sensors for opening n-1 or m-1 of the n or m pairs of first switching units in order to interrupt the direct currents (IS1, IS2, IS4) between each of n-1 or m-1 DC inputs (21, 22, 24) and the two busbars when in a remaining one (23) of the DC inputs the direct current changes from a forward (IS3) to a first reverse current (IR). This allows a fast localization and removal of a faulty string or array without any remarkable interruption of the PV plant and with small-sized switching units, typically with hybrid breakers. Thus the PV plant is distinguished by a high yield rate and a high reliability and can be installed and operated in a cost-efficient manner. Furthermore for reason of the small-sized switching units the combiner box can be realized as rail arrangement with a plurality of box-shaped modules which are attached to the rail arrangement.