Abstract:
Embodiments disclosed herein provide apparatuses and methods for verifying dispense of a fluid from a dispense nozzle. According to one method, a path of electromagnetic radiation from a source to a receiver is obstructed with the fluid dispensed from the dispense nozzle. The intensity of the electromagnetic radiation received by the receiver is measured. The measured intensity is compared with a predetermined intensity to verify the dispense of fluid from the dispense nozzle. One apparatus for verifying dispense of a fluid comprises a source of electromagnetic radiation, and a receiver of the electromagnetic radiation from the source of the electromagnetic radiation operatively associated with the source of the electromagnetic radiation such that the electromagnetic radiation from the source is received by the receiver. A path followed by the electromagnetic radiation from the source to the receiver is offset from the fluid exiting end of the dispense nozzle by a predetermined distance such that dispense of fluid and a major drop of fluid depending from the fluid exiting end of the dispense nozzle obstruct the path and such that a minor drop of fluid does not obstruct the path.
Abstract:
The application of one or more multifunctional holographic optical elements (HOE's) (40, 16) to a photometric apparatus, and a spectrophotometer in particular, is disclosed. Fabrication methods for HOE's especially useful in the foregoing application result in holograms which perform several classical optical (i. e., light gathering and steering) functions. The HOE's so fabricated are useful in a detector mode (16) (i.e., to process light from an illuminated sample for analysis of some portion of its spectrum); in a source mode (40) (i.e., processing light from a source (51) to a focus on a sample); and a combination of source and detector modes.
Abstract:
Embodiments disclosed herein provide apparatuses and methods for verifying dispense of a fluid from a dispense nozzle. According to one method, a path of electromagnetic radiation from a source to a receiver is obstructed with the fluid dispensed from the dispense nozzle. The intensity of the electromagnetic radiation received by the receiver is measured. The measured intensity is compared with a predetermined intensity to verify the dispense of fluid from the dispense nozzle. One apparatus for verifying dispense of a fluid comprises a source of electromagnetic radiation, and a receiver of the electromagnetic radiation from the source of the electromagnetic radiation operatively associated with the source of the electromagnetic radiation such that the electromagnetic radiation from the source is received by the receiver. A path followed by the electromagnetic radiation from the source to the receiver is offset from the fluid exiting end of the dispense nozzle by a predetermined distance such that dispense of fluid and a major drop of fluid depending from the fluid exiting end of the dispense nozzle obstruct the path and such that a minor drop of fluid does not obstruct the path.
Abstract:
Embodiments disclosed herein provide apparatuses and methods for verifying dispense of a fluid from a dispense nozzle. According to one method, a path of electromagnetic radiation from a source to a receiver is obstructed with the fluid dispensed from the dispense nozzle. The intensity of the electromagnetic radiation received by the receiver is measured. The measured intensity is compared with a predetermined intensity to verify the dispense of fluid from the dispense nozzle. One apparatus for verifying dispense of a fluid comprises a source of electromagnetic radiation, and a receiver of the electromagnetic radiation from the source of the electromagnetic radiation operatively associated with the source of the electromagnetic radiation such that the electromagnetic radiation from the source is received by the receiver. A path followed by the electromagnetic radiation from the source to the receiver is offset from the fluid exiting end of the dispense nozzle by a predetermined distance such that dispense of fluid and a major drop of fluid depending from the fluid exiting end of the dispense nozzle obstruct the path and such that a minor drop of fluid does not obstruct the path.
Abstract:
L'invention concerne l'application d'un ou de plusieurs éléments optiques holographiques multifonctionnels (HOEs) (40, 16) à un appareil photométrique, et à un spectrophotomètre en particulier. Des procédés de fabrication d'éléments optiques holographiques multifonctionnels (HOEs) spécialement utiles dans l'application mentionnée ci-dessous permettent d'obtenir des hologrammes qui assurent plusieurs fonctions optiques conventionnelles (c'est-à-dire concentration et guidage de la lumière). Les éléments optiques holographiques ainsi fabriqués sont utiles dans un mode de détecteur (16) (c'est-à-dire traiter la lumière provenant d'un échantillon éclairé pour analyser une certaine portion de son spectre); dans un mode source (40) (c'est-à-dire le traitement de la lumière provenant d'une source (51) et focalisée sur un échantillon); et une combinaison des modes source et de détection.