Abstract:
A wireless power supply and a portable heating device are provided. The wireless power supply includes an electromagnetic shield and the portable heating device includes a magnetic field source. Placement of the magnetic field source proximate the electromagnetic shield can create a local flux window in the electromagnetic shield. The transfer of electromagnetic flux through the local flux window energizes the portable heating device at various locations along the wireless power supply. The effectiveness of the electromagnetic shield is generally maintained away from the flux window, and the electromagnetic shield reduces stray flux that might otherwise damage nearby objects and/or reduce the efficiency of the wireless power supply.
Abstract:
A contactless power supply is provided. The contactless power supply includes two or more primary coils for generating a region of cooperative magnetic flux generally therebetween. A portable device having a secondary coil can be positioned proximate this region of magnetic flux to receive wireless power from the contactless power supply. The spaced-apart primary coils can be wound in alternating directions about a common axis and driven in phase, or can be wound in a single direction about a common axis and driven approximately 180 degrees out of phase. The contactless power supply can include a plurality of primary coils in an adjustable array to accommodate multiple portable devices each with different secondary configurations and power consumption needs.
Abstract:
A composite metal surface that looks metallic, but permits effective transmission of an electromagnetic field. The composite metal surface can be integrated into various electronic equipment, such as telephones, remote controls, battery doors, keyboards, mice, game controllers, cameras, laptops, inductive power supplies, and essentially any other electronic equipment. The composite metal surface can also be integrated into non-electrically conductive heat sinks, high permeability shielding, and polished metal non-electrically conductive surfaces.
Abstract:
A wireless power transfer component with a selectively adjustable resonator circuit having a Q control subcircuit that varies the Q factor of the resonator circuit to control the amount of power relayed by the resonator circuit. The resonator circuit may be in the wireless power supply, the wireless power receiver, an intermediate resonator or any combination thereof. The resonator circuit may be actively configured based on a feedback circuit. The feedback circuit may sense a characteristic in the secondary circuit or elsewhere and actively operate the control subcircuit based on the sensed characteristic. The feedback circuit may cause the Q control subcircuit to change (reduce or increase) the Q factor when the sensed characteristic crosses a threshold value. The Q control subcircuit may include a variable resistor having a value that can be varied to adjust the Q factor of the resonator circuit.
Abstract:
A wireless power transfer system with a remote device having a communication transmitter configured to initiate communications with a framing pulse to prevent noise from being mistaken for legitimate data. The communication system may employ a bi-phase modulation scheme, and the framing pulse may be generated to present no transitions in the communication signal during a specified period of time. The communication transmitter may produce the framing pulse by applying a load in the remote device. The present invention also provides a method for transmitting communication signals in a wireless power supply system including the general steps of: (a) preceding each communication with a framing pulse configured to present a bit sequence that does not exist in legitimate data communications, (b) maintaining the framing pulse for a period of time sufficient to effectively "reset" the communications receiver and (c) transmitting communications following the framing pulse.
Abstract:
The present invention relates to a wireless power supply system including a remote device capable of both transmitting and receiving power wirelessly. The remote device includes a self-driven synchronous rectifier. The wireless power supply system may also include a wireless power supply configured to enter an OFF state in which no power, or substantially no power, is drawn, and to wake from the OFF state in response to receiving power from a remote device.
Abstract:
A system and method for mitigating interference between two or more inductive systems. Interference can be mitigated by, in response to an interference causing event, temporarily adjusting operation of one or more of the inductive sub-systems to reduce interference. A controller can receives communication from multiple inductive systems and instruct the systems to operate so as to reduce interference. The inductive systems can coordinate to operate out of phase with respect to one another to reduce interference. Communication from a data transfer inductive system can be mimicked by another inductive system so that both systems transmit the communication. Interference between multiple inductive systems can be mitigated by specific physical positioning of the transmitters of the inductive sub-systems.
Abstract:
An item of print media including an inductive secondary for providing power to a load. The inductive secondary is responsive to an electromagnetic flux to generate a time-varying current or voltage therein. The current or voltage induced in the inductive secondary directly or indirectly powers the load to thereby enhance the functionality and/or the appeal of the item of print media without significantly adding to its cost. The load can provide a visual and/or auditory output, and can include an electroluminescent display, an e-ink display, a piezo speaker coil, an electrostatic speaker, an OLED, an LED or an LCD display. Embodiments of the invention can be utilized in connection with a wide variety of print media, including for example books, booklets, pamphlets, labels, magazines, manuals, brochures, maps, charts, posters, journals, newspapers or loose leaf pages.
Abstract:
A behavior modification system includes a network of components that interact to collect various data and provide user feedback. The network may include a personal device, an Internet-enabled storage device and a hub capable of receiving communications from the personal device and communicating to the storage device. The personal device may include bio-impedance measurement circuitry, an accelerometer and a processor for determining energy expenditure based on data from the accelerometer(s). The system may include a smart hub capable of routing communications between various components within the system. The hub may include different transceivers for different communication protocols. The system may incorporate a low-power RF wake-up system. The system may include bio-impedance measurement circuitry that is reconfigurable to function as an alternative type of sensor. In other aspects, the present invention provides a method for measuring bio-resonance and a method for determining caloric intake from body composition and caloric expenditure.
Abstract:
A selectively controllable electromagnetic shield having an electromagnetic shielding material and a mechanism for selectively generating an aperture in the shield. The mechanism for selectively generating an aperture in the shield may be a magnetic field source that generates a magnetic field of sufficient strength to substantially saturate all or a portion of the shielding material. For example, a permanent magnet or DC electromagnet may be used to selectively saturate the shield. In its un-saturated state, the magnetic shield has a high permeability so that it draws much of the electromagnetic field into itself and functions as a flux path for the magnetic field. In effect, the shield directs the flow of much of the magnetic field through the shield so that the amount of the field passing from one side of the shield to the other is dramatically reduced. Once saturated, the permeability of the shield is substantially reduced so that the magnetic field lines are no longer drawn into the shield to the same degree. As a result, once saturated, the effectiveness of the shield in the saturated region is reduced and a substantially greater amount of the electromagnetic field may flow through or around the shield in the region saturated by the magnet.