Abstract:
A composition containing a carbon monofluoride admixture is provided. The carbon monofluoride admixture is generally in the form of layer having opposing upper and lower surfaces. Usually, an ion conducting or a solid electrolyte layer is position on one of the upper or lower layers of the monofluoride admixture. In some configurations, the ion conducting or a solid electrolyte layer can be alkaline metal aluminum oxide or alkaline metal aluminum fluoride. The alkaline metal is commonly lithium, and the alkaline metal aluminum oxide or alkaline metal aluminum fluoride is more commonly M z AlX y (M is one of alkali metals, X = O, F), Z can have a value from about 0.5 to about 10 and y can have a value from about 1.75 to about 6.5. The carbon monofluoride admixture can include a polymeric binder and one or more of a conductive carbon black and conductive graphite.
Abstract:
A hybrid electrochemical energy storage device having the attributes of a high power supercapacitor and a lithium ion battery are described. The hybrid electrochemical energy storage device can be a pseudocapacitor with a cathode having a coated activated carbon powder having a coated activated carbon cathode. The coated activated carbon can provide for enhanced energy density and ion conductivity. The activated carbon powder is coated with metal oxides, metal nitrides, metal sulfides, metal phosphates, polymers, and ion conducting or solid electrolytes, and a mixture thereof. More specifically, the activated carbon powder can include two or more active materials, with one of the two or more active materials being carbonaceous particles that comprise from about 50 to about 100 wt% of the composition, and the other of the two or more active materials atomic deposition layers on the carbonaceous particles. The atomic deposited layers can be metal oxides, metal nitrides, metal sulfides, metal phosphates, polymers, and ion conducting or solid electrolytes, and a mixture thereof.
Abstract:
A hybrid electrochemical energy storage device having the attributes of a high power supercapacitor and a lithium ion battery are described. The hybrid electrochemical energy storage device can be a pseudocapacitor with a cathode having a coated activated carbon powder having a coated activated carbon cathode. The coated activated carbon can provide for enhanced energy density and ion conductivity. The activated carbon powder is coated with metal oxides, metal nitrides, metal sulfides, metal phosphates, polymers, and ion conducting or solid electrolytes, and a mixture thereof. More specifically, the activated carbon powder can include two or more active materials, with one of the two or more active materials being carbonaceous particles that comprise from about 50 to about 100 wt% of the composition, and the other of the two or more active materials atomic deposition layers on the carbonaceous particles. The atomic deposited layers can be metal oxides, metal nitrides, metal sulfides, metal phosphates, polymers, and ion conducting or solid electrolytes, and a mixture thereof.