Abstract:
A polylactic acid-based resin composition is provided from which molded articles with a high heat resistance and high impact strength can be molded with improved moldability. Also provided is a heat-resistant polylactic acid-based resin molded article manufactured from the polylactic acid-based resin composition, as well as a process for manufacturing such a heat-resistant molded article. A polylactic acid-based resin composition comprising 0.01 to 5.0 parts by weight of a metal phosphate and 0.01 to 5.0 parts by weight of a basic inorganic aluminum compound, each serving as a nucleating agent, with respect to 100 parts by weight of a polylactic acid-based polymer. The polylactic acid-based resin composition is melted and filled a mold of a molding machine set in a temperature range of not more than the crystallization-initiating point nor less than the glass transition point, as measured by a differential scanning calorimeter (DSC), to be molded the composition under crystallizing.
Abstract:
A polylactic acid-based resin composition is provided from which molded articles with a high heat resistance and high impact strength can be molded with improved moldability. Also provided is a heat-resistant polylactic acid-based resin molded article manufactured from the polylactic acid-based resin composition, as well as a process for manufacturing such a heat-resistant molded article. A polylactic acid-based resin composition comprising 0.01 to 5.0 parts by weight of a metal phosphate and 0.01 to 5.0 parts by weight of a basic inorganic aluminum compound, each serving as a nucleating agent, with respect to 100 parts by weight of a polylactic acid-based polymer. The polylactic acid-based resin composition is melted and filled a mold of a molding machine set in a temperature range of not more than the crystallization-initiating point nor less than the glass transition point, as measured by a differential scanning calorimeter (DSC), to be molded the composition under crystallizing.
Abstract:
A thermal recording material of the invention contains, as a storability improver, tris(2-methyl-4-hydroxy-5-t-butylphenyl)butane trapping and containing water and/or methanol and having a crystal structure that shows a maximum X-ray diffraction peak at a diffi-action angle 2¸ of 6.58° according to X-ray diffraction measurement using an X ray having a wavelength of a Cu-K± line. The recording material has improved heat resistance in non-printing sections while maintaining the moisture-and-heat resistance in printing sections. The thermal recording material of the invention has a thermal-recording layer that contains the tris(2-methyl-4-hydroxy-5-t-butylphenyl)butane in an amount of preferably 0.1 to 15% by mass with respect to the thermal-recording layer. The amount of the water and/or methanol trapped and contained in the tris(2-methyl-4-hydroxy-5-t-butylphenyl)butane is preferably 0.1 to 10% by mass in total.
Abstract:
The present invention relates to an ultraviolet absorber for synthetic resins composed of a triazine compound represented by the general formula (I) shown below (wherein R represents an alkyl group having 1 to 4 carbon atoms, n is 0 or an integer of up to 2, and X represents a group selected from the consisting of group (a) to (d) shown below) (wherein R represents an aliphatic group having 5 to 60 carbon atoms, which is an alicyclic group, an alkyl group having an alicyclic group at the terminal or in the chain thereof, an alkyl group having a branch, or a linear alkyl group, depending on the number of carbon atoms; R represents an alkyl group having 1 to 18 carbon atoms or a (poly)alkyleneoxyalkyl group; R' represents an aliphatic diyl group having 5 to 60 carbon atoms; R and n have the same meanings as those described in the general formula (I) above).
Abstract:
The present invention provides a process for producing a crystal nucleator composition comprising; a first step pulverizing 95% by mass or more of a crystal nucleator ingredient containing one or two or more kinds of specific compounds to a primary particle diameter of 0.8 µm or smaller with a dry medium-stirring type pulverizer; and a second step mixing and pulverizing the pulverized crystal nucleator ingredient obtained in the previous step and a metal aliphatic carboxylate ingredient containing one or two or more kinds of specific metal aliphatic carboxylates. Also provided is a crystalline polymer composition comprising a crystal nucleator composition obtained by the production process.