Abstract:
A nonwoven web of fibrous material is made by the foam process using a manifold of a particular construction. The manifold has a casing with first and second opposite ends including an inlet for a foam-fiber-surfactant slurry at the first end, and optionally a valved outlet at the second end. A center section of the manifold casing has a (e.g. rectangular) cross-section that becomes smaller moving from an inlet toward the outlet. First and second substantially closed side walls, a porous front wall having an effective length, and a back wall opposite the front wall, are provided for the center section, the walls planar or curved. Any suitable structures are provided for introducing a second (e.g. substantially fiber-free, or a fiber-foam slurry) foam into the center section through the back wall. Pressure sensors penetrating one or both of the side walls may sense the pressure within the center section, and automatically control the introduction of slurry into the inlet, withdrawal through the outlet, and/or introduction of the second foam into/through the back wall, so as to maintain the basis weight of the foam-fiber slurry passing through the front wall substantially constant along the effective length of the front wall.
Abstract:
A non-woven mat useful for a wide variety of purposes, including forming reinforced resin products, is produced in a manner having different specific uses of, and advantages over, conventional chopped strand mats and conventional glass tissue. The mat is preferably made by the foam process (but may be made by the liquid process), and at speeds well in excess of 60 m./min., and has a substantially uniform construction even when low density (e.g. 100 g/m or less). At least 20 % (preferably at least 85 %) of the fibers are in fiber bundles with between 5-450 fibers/bundle. The fibers (typically at least 85 %) have a length between 5-100 mm, preferably 7-50 mm, substantially the same as the length of the fiber bundle they are in. The fibers are preferably held in the bundles by substantially non-water soluble sizing, such as epoxy resin or PVOH. The fibers in the bundles typically have diameters of approximately 7-500 microns, preferably about 7-35 microns. The bundles may comprise at least 10 % reinforcing fibers, such as glass, aramid or acrylic.
Abstract:
Filtering medium based on activated carbon which is characterized in that it comprises three superposed layers, respectively an inner layer and two outer layers, the inner layer consisting of 80 to 95% by dry weight of activated carbon, the balance for 100% consisting of organic and/or inorganic chemical fibres, the first outer layer comprisingfrom 45 to 95% by dry weight of organic and/or inorganic chemical fibres, the balance for 100% consisting of activated carbon and/or of a material having a density of less than 0.9, the second outer layer comprising from 5 to 25% by dry weight of activated carbon, the balance for 100% consisting of organic and/or inorganic chemical fibres, and in that the weight of the inner layer is between 40 and 200 g/m and the weight of the outer layers is between 10 and 100 g/m .
Abstract translation:基于活性炭的过滤介质,其特征在于它包括三个叠加层,分别为内层和两个外层,内层由80-95%干重量的活性炭组成,其余100%由有机物组成 和/或无机化学纤维,第一外层包含45-95%干重量的有机和/或无机化学纤维,100%的余量由活性炭和/或密度小于0.9的材料组成 ,第二外层包含5-25%干重量的活性炭,其余100%由有机和/或无机化学纤维组成,并且内层的重量为40-200g / m 2 <2>,外层的重量在10和100g / m 2之间。
Abstract:
Disclosed is a method of producing a non-woven web of fibrous or particulate material comprising: formation of a foam slurry; deposition of that slurry onto a foraminous element having a three-dimensional mold; and formation of a web having a three-dimensional shape that is not substantially planar by removal of foam from the slurry through the foraminous element and drying the web. An apparatus therefor is also disclosed. The method may be used in production a variety of products, including automotive pleated fluid and air filters, pleated heating and/or air conditioning (HVAC) filters, shaped breathing mask filters and bacterial filters, laminated cleaning products with super-absorbent middle layers, such as a mop wipe shape to fit a cleaning mop head, and other products.
Abstract:
Filtering medium based on activated carbon which is characterized in that it comprises three superposed layers, respectively an inner layer and two outer layers, the inner layer consisting of 80 to 95% by dry weight of activated carbon, the balance for 100% consisting of organic and/or inorganic chemical fibres, the first outer layer comprisingfrom 45 to 95% by dry weight of organic and/or inorganic chemical fibres, the balance for 100% consisting of activated carbon and/or of a material having a density of less than 0.9, the second outer layer comprising from 5 to 25% by dry weight of activated carbon, the balance for 100% consisting of organic and/or inorganic chemical fibres, and in that the weight of the inner layer is between 40 and 200 g/m and the weight of the outer layers is between 10 and 100 g/m .
Abstract:
Disclosed is a method of producing a non-woven web of fibrous or particulate material comprising: formation of a foam slurry; deposition of that slurry onto a foraminous element having a three-dimensional mold; and formation of a web having a three-dimensional shape that is not substantially planar by removal of foam from the slurry through the foraminous element and drying the web. An apparatus therefor is also disclosed. The method may be used in production a variety of products, including automotive pleated fluid and air filters, pleated heating and/or air conditioning (HVAC) filters, shaped breathing mask filters and bacterial filters, laminated cleaning products with super-absorbent middle layers, such as a mop wipe shape to fit a cleaning mop head, and other products.
Abstract:
A non-woven web of fibrous material is produced using a moving foraminous element in the practice of the foam process. A first foam slurry of air, water, fibers and a surfactant is generated and centrifugally pumped into contact with the moving foraminous element. Substantially fiber-free foam is withdrawn from the foraminous element while forming a non-woven web of fibrous material on the foraminous element, and at least a part of the substantially fiber-free foam is used in the generation of the first foam slurry. Recycling is also typically practiced using a centrifugal pump, and the centrifugal pumps are preferably degassing pumps which remove some of the gas from the foam. By practicing the invention it is possible to produce fibrous webs using the foam process that are more than two meters wide, and at a forming speed of more than about 100 m/min (e.g. about 200-500 m/min).
Abstract:
A nonwoven web of fibrous material is made by the foam process using a manifold of a particular construction. The manifold has a casing with first and second opposite ends including an inlet for a foam-fiber-surfactant slurry at the first end, and optionally a valved outlet at the second end. A center section of the manifold casing has a (e.g. rectangular) cross-section that becomes smaller moving from an inlet toward the outlet. First and second substantially closed side walls, a porous front wall having an effective length, and a back wall opposite the front wall, are provided for the center section, the walls planar or curved. Any suitable structures are provided for introducing a second (e.g. substantially fiber-free, or a fiber-foam slurry) foam into the center section through the back wall. Pressure sensors penetrating one or both of the side walls may sense the pressure within the center section, and automatically control the introduction of slurry into the inlet, withdrawal through the outlet, and/or introduction of the second foam into/through the back wall, so as to maintain the basis weight of the foam-fiber slurry passing through the front wall substantially constant along the effective length of the front wall.