Abstract:
A gas analysis cell (10) positioned within an optical resonant cavity in a gas analysis system is disclosed wherein the cell includes a flow (50A, 50B) of buffer gas which forms a 'dam', thereby protecting the optical elements (20-22) in the analysis system. The analysis cell includes an inlet (34) for introducing a gas sample (52) into the analysis chamber (26) of the cell. Two buffer gas inlet ports (40, 42), one on each end of the cell, are provided to introduce a flow of buffer gas (50) which is directed past optical elements (20-22) in the system adjacent the ends of the cell. Two ouput ports (44, 46) are located at the ends of the analysis chamber to remove the buffer gas and gas sample mixture. The flow (50) of buffer gas acts to confine the gas sample (52) within the analysis chamber and reduce adverse effects which occur when the gas sample comes in contact with the optical elements of the system. By providing a constant non-turbulent flow of gas adjacent the system optics, adverse changes in index of refraction are avoided, thus reducing beam steering and Schlieren effects which can occur when Brewster windows or other optics are used to constrain the gas sample within the analysis cell. The buffer gas flow in the analysis cell of the present invention eliminates the need for gas cell windows which have intrinsic losses. This in turn minimizes losses which cause lower circulating intracavity power and signal strength.
Abstract:
A gas analysis cell (110) positioned within an optical resonant cavity in a gas analysis system is disclosed wherein the cell (110) includes a flow of buffer gas which forms a ''dam'', thereby protecting the optical elements (120-122) in the analysis system. The analysis cell (110) includes an inlet (134) for introducing a gas sample into the analysis chamber (126) of the cell. Two buffer gas inlet ports (140, 142), one on each end of the cell, are provided to introduce a flow of buffer gas which is directed past optical elements (120-122) in the system adjacent the ends of the cell. Two output ports (144, 146) are located at the ends of the analysis chamber (126) to remove the buffer gas and gas sample mixture. The flow of buffer gas acts to confine the gas sample within the analysis chamber (126) and reduce adverse effects which occur when the gas sample comes in contact with the optical elements (120-122) of the system. By providing a constant non-turbulent flow of gas adjacent the system optics, adverse changes in index of refraction are avoided, thus reducing beam steering and Schlieren effects which can occur when Brewster windows or other optics are used to constrain the gas sample within the analysis cell. The buffer gas flow in the analysis cell (110) of the present invention eliminates the need for gas cell windows which have intrinsic losses. This in turn minimizes losses which cause lower circulating intracavity power and signal strength.
Abstract:
L'invention se rapporte à une cuvette d'analyse de gaz (10), qui est placée à l'intérieur d'une cavité résonnante optique d'un système d'analyse de gaz. Cette cuvette comprend un écoulement (50A, 50B) de gaz tampon formant un barrage, en vue de protéger les éléments optiques (20-22) du système d'analyse. La cuvette d'analyse comporte une ouverture d'entrée (34) servant à introduire un échantillon gazeux (52) dans la chambre d'analyse (26) de la cuvette. Deux orifices d'entrée (40, 42) pour le gaz tampon, situés chacun à l'une des deux extrémités de la cuvette, servent à introduire un écoulement de gaz tampon (50) qui est amené à passer par les éléments optiques (20-22) du système à proximité adjacente des extrémités de la cuvette. Deux orifices de sortie (44, 46) sont placés aux extrémités de la chambre d'analyse et servent à en retirer le mélange gaz tampon et échantillon gazeux. L'écoulement (50) de gaz tampon sert à confiner l'échantillon gazeux (52) dans la chambre d'analyse et à réduire les effets néfastes qui risqueraient de se produire par contact de l'échantillon gazeux avec les éléments optiques du système. En prévoyant un écoulement constant non turbulent de gaz à proximité adjacente des éléments optiques du système, on évite les variations négatives de l'indice de réfraction, ce qui réduit les orientations de faisceaux et les effets de Schlieren qui risqueraient de se produire avec l'utilisation de fenêtres de Brewster ou d'autres éléments optiques destinés à contenir l'échantillon gazeux dans la cuvette d'analyse. L'écoulement de gaz tampon dans la cuvette d'analyse élimine la nécessité de recourir à des fenêtres pour la cuvette de gaz qui se caractérisent par des pertes intrinsèques. On réduit ainsi au minimum les pertes qui entraînent une réduction de la puissance de circulation dans la cavité ainsi qu'une réduction de la force des signaux.