Abstract:
PROBLEM TO BE SOLVED: To provide a method for optimizing a prescription for a laser ablation type cornea treatment or an ophthalmologic implantation. SOLUTION: The method is an actually measured correction prescription for a present patient having a related classification element, and contains a step receiving the actually measured correction prescription using a wavefront type determination method. It is a data base of a treatment result on a plurality of previously treated patients. Each of the patient treatment results has at least one related classification element, and the database provided with the wavefront determination type correction prescription before the treatment and a visual profile after the treatment is accessed. From the treatment result in the database, the average difference between the pre-treatment prescription and the post-treatment visual profile in at least some previously treated patients having the classification element common to the present patient is calculated. In the last, the present correction prescription for the patient is adjusted so as to correspond to the calculated average difference, and an optimum prescription is formed. COPYRIGHT: (C)2003,JPO
Abstract:
PROBLEM TO BE SOLVED: To provide a method for optimizing the recipe to laser-ablation corneal treatment. SOLUTION: A method for optimizing a prescription for laser-ablation corneal treatment includes the steps of receiving a measured correction prescription for a current patient having a classification element associated therewith, the prescription having been measured using wavefront determination. A database of treatment outcomes on a plurality of previously treated patients is accessed, each treated patient outcome having associated therewith at least one classification element and comprising a preoperative wavefront-determined correction prescription and a postoperative visual profile. From the treatment outcomes in the database is calculated an average difference between the preoperative prescription and the postoperative profile for at least some of the previously treated patients having a classification element in common with the current patient. Finally the current patient correction prescription is adjusted commensurate with the calculated average difference to form an optimized prescription. COPYRIGHT: (C)2003,JPO
Abstract:
A system (10) and method for converting measured wavefront data into an ablation profile for correcting visual defects includes providing measured wavefront (24) data on an aberrated eye by a method such as known in the art. The measured wavefront data (701) are correlated with accumulated data on previously treated eyes. Next an adjustment is applied to the measured wavefront data based upon the correlating step (707). This adjustment is used to form adjusted wavefront data (708) for input to a wavefront data correction algorithm to calculate an ablation profile (709) therefrom. The wavefront data correction algorithm may be modeled as, for example, Zemike polynomials with adjusted coefficients.
Abstract:
A method for optimizing a prescription for an ophthalmic implant includes the steps of receiving a measured correction prescription for a current patient having a classification element associated therewith, the prescription having been measured using wavefront determination. A database of treatment outcomes on a plurality of previously treated patients is accessed, each treated patient outcome having associated therewith at least one classification element and comprising a preoperative wavefront-determined correction prescription and a postoperative visual profile. From the treatment outcomes in the database is calculated an average difference between the preoperative prescription and the postoperative profile for at least some of the previously treated patients having a classification element in common with the current patient. Finally the current patient correction prescription is adjusted commensurate with the calculated average difference to form an optimized prescription, which is then transmitted automatically to an implant manufacturing device.
Abstract:
A method for optimizing a prescription for laser-ablation corneal treatment includes the steps of receiving a measured correction prescription for a current patient having a classification element associated therewith, the prescription having been measured using wavefront determination. A database of treatment outcomes on a plurality of previously treated patients is accessed, each treated patient outcome having associated therewith at least one classification element and comprising a preoperative wavefront-determined correction prescription and a postoperative visual profile. From the treatment outcomes in the database is calculated an average difference between the preoperative prescription and the postoperative profile for at least some of the previously treated patients having a classification element in common with the current patient. Finally the current patient correction prescription is adjusted commensurate with the calculated average difference to form an optimized prescription.
Abstract:
A method for optimizing a prescription for laser-ablation corneal treatment includes the steps of receiving a measured correction prescription for a current patient having a classification element associated therewith, the prescription having been measured using wavefront determination. A database of treatment outcomes on a plurality of previously treated patients is accessed, each treated patient outcome having associated therewith at least one classification element and comprising a preoperative wavefront-determined correction prescription and a postoperative visual profile. From the treatment outcomes in the database is calculated an average difference between the preoperative prescription and the postoperative profile for at least some of the previously treated patients having a classification element in common with the current patient. Finally the current patient correction prescription is adjusted commensurate with the calculated average difference to form an optimized prescription.
Abstract:
An apparatus for determining aberrations of an eye includes a patient head rest allowing for positioning adjustment. The patient head rest is operable with an optical table having a base. The base includes a probe beam generating apparatus, probe beam directing optics which itself comprises a beam splitter; a mirror; and a lens. The probe beam directing optics is capable of directing a probe beam toward an eye of a patient positioned on the patient head rest. Video image components are provided and comprise a light source, a mirror; and a video camera. The video image components are capable of generating an image of an eye of a patient positioned on the patient head rest. Eye fixation components generate a target that the eye of a patient positioned on the patient head rest can view. The eye fixation components comprise a fixation target, a light source, a lens, and a mirror. Wavefront directing and analyzing components measure a wavefront emanating from the eye of a patient positioned on the patient head rest and determine aberrations of the eye that range from at least about + or - 1 diopters to at least about + or - 6 diopters. The wavefront directing and analyzing components include a lens; a mirror, a microlens array, a camera, and a data processor.
Abstract:
Dispositivo (300) para determinar las aberraciones de un ojo (120), que comprende: un soporte de cabeza del paciente (318) y una plataforma óptica (306) asociada con el respaldo para la cabeza del paciente, comprendiendo dicha plataforma óptica de una base: a) un dispositivo (390) para generar un haz de sonda para proporcionar un haz de sonda (350); b) una óptica para dirigir el haz de sonda que se puede accionar con el dispositivo para generar un haz de sonda, comprendiendo la óptica para dirigir el haz de sonda un divisor de haz (378), un espejo y una lente que se puede accionar dentro de un camino de haz del haz de sonda, siendo capaz la óptica para dirigir el haz de sonda de conducir el haz de sonda hacia un ojo de un paciente situado en el respaldo de la cabeza del paciente; c) unos componentes de la imagen de vídeo, comprendiendo los componentes de la imagen de vídeo comprenden una fuente de luz (336) para iluminar el ojo del paciente, y un espejo y una cámara de vídeo (338) para captar el ojo, siendo capaces los componentes de la imagen de vídeo de generar una imagen del ojo del paciente posicionado en el respaldo de la cabeza del paciente; d) unos componentes para la fijación del ojo, comprendiendo los componentes para la fijación del ojo una diana de fijación (366) para ser visionada por el ojo del paciente, una fuente de luz para iluminar la diana, y una lente y un espejo operativo en el recorrido de la diana, siendo capaces los componentes de fijación de generar una diana que puede ser visionada por el ojo de un paciente posicionado en el respaldo de la cabeza del paciente; y e) unos componentes para dirigir y analizar el frente de onda (356) que pueden funcionar con el ojo de un paciente, comprendiendo los componentes para dirigir y analizar el frente de onda una lente, un espejo (410), una matriz de microlentes (412), y una cámara (406) operativa dentro de un camino óptico de un ojo, y un procesador de datos (326) operativo con la cámara, y que incluye unos medios (358, 360; 506, 508) para la amplificación del frente de onda para reducir la pendiente del frente de onda.
Abstract:
A system and method for controlling an eye movement tracker includes monitoring a plurality of eye positions by following a feature using the tracker. An optical beam is sent into the eye, and an intensity of a reflected beam from the eye is sensed at each position. If the intensity of the reflected beam fluctuates from a predetermined acceptable intensity range, the tracker is returned to a frozen position. The frozen position comprises a most recent position at which the intensity lay within the intensity range. The tracker is also frozen if the noise in the signal exceeds a predetermined acceptable maximum noise level and for counting a number of times the tracker is frozen. The procedure is aborted if the tracker is frozen repeatedly and for a time exceeding a predetermined maximum acceptable time.
Abstract:
Certain aspects of the present disclosure provide techniques for predicting a likelihood of future failure of components in an ophthalmic medical device and performing preventative maintenance on the ophthalmic medical device. An example method generally includes receiving, from an ophthalmic medical device, measurements of one or more operational parameters associated with the ophthalmic medical device. Using one or more models, a future failure of the ophthalmic medical is predicted. The predictions are generated based, at least in part, on the received measurements of the one or more operational parameters. One or more actions are taken to perform preventative maintenance on the ophthalmic medical device based on the predicted future failure of the ophthalmic medical device.