Abstract:
The present invention provides methods and systems including orthodontic tooth positioning appliances. An exemplary appliance can include teeth receiving cavities shaped such that, when worn by a patient, repositioning the patient's teeth from a first arrangement toward a subsequent or target arrangement. Appliances can include a cavity having one or more shaped features or protrusions shaped and/or positioned so as to apply a desired force to a patient's tooth received in the cavity and move the tooth along a desired path or direction.
Abstract:
An orthodontic alignment device can have a palatal contour anchorage (PCA) feature that generally matches the shape of the patient's hard pallet. This PCA feature may be built slightly off-set to deliberately push against the patient's palate and/or gingiva to provide anchorage support of staged translation of the teeth. By transferring the required anchorage away from the teeth and onto the palate, through the PCA feature, the adjacent teeth are no longer subjected to unwanted side effects of reaction forces.
Abstract:
Orthodontic systems and related methods are disclosed for designing and providing improved or more effective tooth moving systems for eliciting a desired tooth movement and/or repositioning teeth into a desired arrangement. Methods and orthodontic systems of the invention include tooth attachments having improved or optimized parameters selected or modified for more optimal and/or effective application of forces for a desired/selected orthodontic movement. Attachments of the present invention can be customized to a particular patient (e.g., patient-customized), a particular movement, and/or a sub-group or sub-set of patients, and configured to engage an orthodontic tooth positioning appliance worn by a patient, where engagement between the attachment and orthodontic appliance results in application of a repositioning force or series/system of forces to the tooth having the attachment and will generally elicit a tooth movement.
Abstract:
Releasable and removable palatal expander apparatuses (100) for expanding a patient's palate ("palatal expanders") and methods of using and making them. These releasable palatal expanders (100) are adapted for ease in removal by the patient or caregiver, and may include a breach region (167) configured to predictably bend or break when a pulling force is applied. The palatal expander apparatuses (100) described herein may include one or more locks for locking the palatal expander onto the patient's teeth. The lock(s) may be unlocked to release the palatal expander from the teeth. A lock may include a control for manually unlocking the lock. Unlocking the locks may allow the palatal expander to automatically disengage from the patient's teeth.
Abstract:
A removable arch adjustment appliance includes a removable shell having a plurality of cavities formed therein, wherein the plurality of cavities are shaped to receive at least one posterior tooth of a patient on each side of a patient's jaw. The shell can include an elastic transpalatal element that spans a palate of the patient and provides force to expand at least one of the spaces between the posterior teeth on each side of a patient's jaw or the palate of the patient. The transpalatal element can include a predetermined force characteristic, a number of force control elements to control the force provided by the transpalatal element, and/or a regulating structure to balance and direct the force provided by the transpalatal element, wherein the transpalatal element has a width specific to a stage of a treatment plan.
Abstract:
A system for correcting class III malocclusions is disclosed. The system may include a maxilla appliance having tooth receiving cavities shaped to receive teeth of the maxilla and a first coupling for receiving an elastic. The system may also include a mandibular appliance having tooth receiving cavities shaped to receive teeth of the mandible. In some embodiments, the system includes a class III corrective appliance having a first mount shaped to engage with the mandibular arch of the patient and having a second coupling shaped to receive the elastic.
Abstract:
Described herein are intraoral appliances with adaptive cellular materials and structures to provide enhanced mechanical properties and orthodontic functionality, and related methods. The described appliances may have higher Young's modulus and elongation rate than appliances made from conventional materials. Further, the described appliances may have desirable non-linear force/strain profiles. Additionally, the control provided by using cellular structures allow for increased customization for individual patients. Thus, the described appliances may be more effective, have longer appliance lifetimes and/or provide less discomfort to patients.
Abstract:
Methods for designing and fabrication of a series of apparatuses for expanding a patient's palate ("palatal expanders"). In particular, described herein are methods and apparatuses for forming palatal expanders, including rapid palatal expanders, as well as series of palatal expanders formed as described herein and apparatuses for designing and fabricating them.
Abstract:
Palatal expander apparatuses for expanding a patient's palate ("palatal expanders") and methods of using and making them. These palatal expanders may be configured to have a variable surface smoothness on one side (e.g., the lingual-facing surface) compared to the opposite side (e.g., the palatal- facing surface). These palatal expanders may be configured to have a varying thickness in the palatal region. These palatal expanders may be adapted for ease in removal by the patient or caregiver (e.g., including a hinged region and/or detachment region, and/or including a thinner buccal side then occlusal side, etc.).
Abstract:
Method and system comprising one or more processors configured with instructions to perform said method for fabricating an orthodontic appliance comprising an integrally formed component, the method comprising: determining a movement path to move one or more teeth from an initial arrangement to a target arrangement; determining an appliance geometry for an orthodontic appliance comprising a shell and one or more integrally formed components, wherein the shell comprises a plurality of teeth receiving cavities shaped to move the one or more teeth from the initial arrangement to the target arrangement; and generating instructions for direct fabrication of the orthodontic appliance wherein the appliance is made of more than one material or thickness or comprises a plurality of arms.