Abstract:
An embodiment relates to a computer- implemented data processing system and method for storing a data set at a plurality of data centers. The data centers and hosts within the data centers may, for example, be organized according to a multi-tiered ring arrangement. A hashing arrangement may be used to implement the ring arrangement to select the data centers and hosts where the writing and reading of the data sets occurs. Version histories may also be written and read at the hosts and may be used to evaluate causal relationships between the data sets after the reading occurs.
Abstract:
An online analytical processing system may comprise an n-dimensional cube structured using slice-based partitioning in which each slice comprises one or more hierarchies of data points. A region of a hierarchy may be classified according to computational demands associated with the region. A scaling or replication mechanism may be applied to the region based on the computational demands associated with that region.
Abstract:
A system, method and computer-readable medium for request routing. A client request processing a resource identifier for requested content transmits a first DNS query to a content delivery network service provider. The content delivery network service provider transmits an alternative resource identifier in response to the client computing device DNS query. The client computing device then issues a second DNS query to the same content delivery network service provider. The content delivery network service provider can then either resolve the second DNS query with an IP address of a cache component or transmit another alternative resource identifier that will resolve to the content delivery network service provider. The process can repeat with the content delivery network service provider's network until a DNS server resolves a DNS query from the client computing device.
Abstract:
Disclosed are various embodiments for replication of machine instances in a computing environment. A clone machine instance is instantiated from a machine image associated with an original machine instance. A stored execution state of the original machine instance is applied to the clone machine instance. At least a portion of a series of stored events received by the original machine instance is applied to the clone machine instance.
Abstract:
A system and method for management and processing of resource requests is provided. A content delivery network service provider determines a class associated with a set of client computing devices and monitors resources requests for the determined class. The content delivery network service provider then identifies at least one cache component for providing content to client computing devices as a function of the determined class. In other embodiments, instead of cache components, the content delivery network service provider identifies a second set of client computing devices as a function of the determined class for providing the content information.
Abstract:
A system that implements a scalable data storage service may maintain tables in a non-relational data store on behalf of clients. The system may provide a Web services interface through which service requests are received, and an API usable to request that a table be created, deleted, or described; that an item be stored, retrieved, deleted, or its attributes modified; or that a table be queried (or scanned) with filtered items and/or their attributes returned. An asynchronous workflow may be invoked to create or delete a table. Items stored in tables may be partitioned and indexed using a simple or composite primary key. The system may not impose pre-defined limits on table size, and may employ a flexible schema. The service may provide a best-effort or committed throughput model. The system may automatically scale and/or re-partition tables in response to detecting workload changes, node failures, or other conditions or anomalies.
Abstract:
A system and method for management and processing of resource requests is provided. A content delivery network service provider receives a DNS query from a client computing device. The DNS query corresponds to a requested resource from the client computing device. The content delivery network service provider associates the client computing device with a cluster of other client computing devices. Based on routing information for the cluster, the content delivery network service provider routes the DNS query. The process can further include monitoring performance data associated with the delivery of the requested resource and updating the routing information for the cluster based on the performance data for use in processing subsequent requests from client computing devices in the cluster.
Abstract:
Aspects of a data environment, such as the creation, provisioning, and management of data stores and instances, are managed using a separate control environment. A user can call into an externally-facing interface of the control environment, the call being analyzed to determine actions to be performed in the data environment. A monitoring component of the control plane also can periodically communicate with the data environment to determine any necessary actions to be performed, such as to recover from faults or events in the data environment. A workflow can be instantiated that includes tasks necessary to perform the action. For each task, state information can be passed to a component in the data environment operable to perform the task, until all tasks for an action are completed. Data in the data environment can be accessed directly using an externally-facing interface of the data environment, without accessing the control plane.
Abstract:
A database service may provide multi-tenant and single-tenant environments in which tables may be maintained on behalf of clients. The service (or underlying system) may create database instances and tables in either or both types of environments (e.g., by default or according to various parameter values specified in requests to create the instances or tables). When receiving and servicing requests directed to a table hosted in a single-tenant environment, the system may elide at least some of the authentication or metering operations that would be performed when servicing requests directed to tables hosted in a multi-tenant environment. Tables may be moved from a single-tenant environment to a multi-tenant environment, or vice versa, automatically by the system (e.g., dependent on an observed, expected, or desired throughput) or in response to an explicit request from a client to do so (e.g., to increase throughput or reduce cost).
Abstract:
An analytics module may be embedded into an application developed, published, or used by an entity in addition to the owner of the data under analysis. An access token may be submitted by the analytics module to a provider of hosted services. The access token may correspond to an n-dimensional cube containing data at a level of granularity permitted to the application. The access token may incorporate additional policies controlling access to the corresponding n-dimensional cube.