Abstract:
A data storage service receives a request to store data into a data storage system that consists of many physical data storage locations, each location having various physical characteristics. The data storage service determines a proper location for the data based on data placement rules applied to the physical data storage locations such that a set of proper locations is identified. The data storage service can place the data according to data placement rules.
Abstract:
A device such as a network-attachable data transfer device may be configured to operate in a cluster to coordinate the storage of data. A first manifest may be generated inventorying a first set of data successfully transferred to the data transfer device from a data source. A second manifest may be generated inventorying a second set of data successfully transferred from the data transfer device to a data destination. The first manifest may be compared with the second manifest to determine a transfer status of one or more data objects. The transfer status may indicate one or more data objects successfully transferred to the data destination from the data source. The one or more objects may be processed according to the transfer status.
Abstract:
A network-attachable data transfer device housed within a shippable enclosure that incorporates an updateable electronic display for displaying shipping destination information is disclosed. The device may be initialized (e.g., prepared to receive data, and the updateable electronic shipping display set to the shipping destination) by a service provider and shipped, in accordance with the displayed destination address, as a self-contained shipping unit. The device may be installed onto a network at the destination and loaded with data. The display may also be updated with the next destination address such that the device is shipped to the updated destination address (e.g., back to the service provider, or onto other destinations before being send back to the service provider). When the device is received back at the service provider, the data is transferred from the device to a service provider storage facility, wiped of data, and prepared to be sent out again.
Abstract:
A switching device is implemented in a network-attachable data transfer device to provide data storage access to other such devices. In some embodiments, network-attachable data transfer devices are arranged in a clustered configuration to provide various computational and storage services. When one or more devices of the cluster fails, various implementations associated with the switching device, via an external data interface, provide operational mitigation, optimized data recovery, and efficient reinstatement of normal operation of the cluster.
Abstract:
A network-attachable data transfer device housed within a shippable enclosure that incorporates an updateable electronic display for displaying shipping destination information is disclosed. The device may be initialized (e.g., prepared to receive data, and the updateable electronic shipping display set to the shipping destination) by a service provider and shipped, in accordance with the displayed destination address, as a self-contained shipping unit. The device may be installed onto a network at the destination and loaded with data. The display may also be updated with the next destination address such that the device is shipped to the updated destination address (e.g., back to the service provider, or onto other destinations before being send back to the service provider). When the device is received back at the service provider, the data is transferred from the device to a service provider storage facility, wiped of data, and prepared to be sent out again.
Abstract:
A network-attachable data transfer device housed within a shippable enclosure that incorporates an updateable electronic display for displaying shipping destination information is disclosed. The device may be initialized (e.g., prepared to receive data, and the updateable electronic shipping display set to the shipping destination) by a service provider and shipped, in accordance with the displayed destination address, as a self-contained shipping unit. The device may be installed onto a network at the destination and loaded with data. The display may also be updated with the next destination address such that the device is shipped to the updated destination address (e.g., back to the service provider, or onto other destinations before being send back to the service provider). When the device is received back at the service provider, the data is transferred from the device to a service provider storage facility, wiped of data, and prepared to be sent out again.
Abstract:
A data storage service receives a request to perform an operation in a data storage system that consists of many data storage devices, each device having a corresponding set of devices that may cause interference. The data storage service determines a manner in which to perform the operation while evaluating the current activity state of the devices that may cause interference. The data storage service can perform the operation in the determined manner.