Abstract:
A particulate clumping animal litter composition is disclosed. The composition comprises water-swellable smectite clay particles bound to magnetically-attraciable metal particles such that substantially all particles of the animal litter composition are attracted to a magnetic surface. The animal litter composition exhibits favorable properties such as absorbency, resiliency, homogeneity, clump strength, and particle size. Methods of production for clumping animal litter compositions are also disclosed that employ sufficient shear to bind the water-swellable smectite clay particles to the magnetically-attractable metal particles such that the animal litter compositions exhibit favorable properties. A method and apparatus for the collection of magnetically-attractable animal litter particles are also disclosed.
Abstract:
Layered phyllosilicates are useful for adsorbing and/or binding to cholesterol and, thereby, reducing blood cholesterol in a patient. Accordingly, provided herein is a method of reducing hypercholesteremia in a mammal comprising administering to said mammal a protonated and at least partially exfoliated layered phyllosilicate material alone and in combination with other cholesterol-reducing agents in an amount effective to reduce hypercholesteremia in said mammal.
Abstract:
Concentrated suspensions of smectite clays are obtained as either relatively "thin" or highly shear-thinning slurries that are easy to pump, by adding one or more of certain cationic polymers whose weight average molecular weight, Mw, is 50,000 or higher. It was found during the course of the invention that a cationic polymer with an Mw of 10,000 did not work, while the same polymer with a bimodal Mw of 50,000 and 30,000 worked satisfactorily. To achieve the full advantage of the present invention, the cationic polymer preferably has 1 to 10 milliequivalents of cationic charge per gram of the polymer, and more preferably 5 to 10 milliequivalents of cationic charge per gram of the polymer, and most preferably 6 to 8 milliequivalents of cationic charge per gram of the polymer.
Abstract:
Apparatus in fluid communication with a water leg portion of a hydrocarbon-contaminated water, e.g., a water leg portion of an offshore drilling or production platform sump tank for conveying water, separated from oil, into contact with organophilic media canisters such that the hydrocarbons and other organic materials commingled with the sump tank water will be adsorbed onto the organophilic media and detected by the embedded probe in selected canisters. The canisters are provided in a plurality of stacks and are in fluid communication with a header disposed at the bottom of the vessel housing the various stacks of canisters. Solids that do not pass through the canisters are accumulated at the bottom of the vessel and easily drained through a drain port. The water will pass through the media and will be conveyed back to the ocean water without contamination . At some point in time, the organophilic media will become "spent" and at a certain "spent level", the saturated condition of the organomedia will be electronically detected by the embedded probe and alarm/control panel. The alarm indicates that the "spent" organophilic media should be replaced with fresh media or the spent media regenerated.
Abstract:
Reactive geocomposite mats, and their method of manufacture, for treating contaminants in sediment, soil or water that allow the passage of essentially non-contaminated water therethrough. The geocomposite mat includes a pre-formed woven or non-woven geotextile, that is needlepunched to an outer geotextile sheet layer to provide a high loft, structurally secured, pre-formed geotextile having a thickness of about 6 mm to about 200 mm, and having, a porosity sufficient to receive a powdered or granular contaminant-reactive material, contaminant-sorptive material, or a contaminant-neutralizing material (hereinafter collectively referred to as "contaminant-reactant material" or "contaminant-reactive material") throughout its thickness, or in any portion of the thickness across its entire major surface(s). The powdered or granular contaminant-reactive material is disposed within the pores of the previously formed, high loft geotextile mat to surround the fibers, e.g., by vacuum or vibrating the high loft mat while in contact with the contaminant-reactive material to allow the powdered or granular contaminant-reactive material to flow by gravity into the pores of the previously formed, needlepunched geotextile. A liquid-permeable outer geotextile sheet then is secured to the filled geotextile, preferably by heating upwardly extending fibers of the pre-formed geotextile mat to prevent the powdered or granular material from escaping from the geotextile during transportation and installation.
Abstract:
Bioremediation geocomposite articles, and their method of manufacture, for treating (digesting) contaminants in soil or water. The bioremediating geocomposite mat includes a woven or non- woven geotextile, having a thickness of about 6 mm to about 200 mm. In the preferred embodiment, outer layers of the geocomposite article have a porosity sufficient to receive a powdered or granular contaminant-reactive material, contaminant-sorptive material, or a contaminant-neutralizing material in at least outer portions of the thickness across its entire major surface(s) for better contact of the bacteria with contaminants held by the powdered or granular material. In the most preferred embodiment, liquid-permeable cover sheets are adhered to the upper and lower major surfaces of the bacterial-containing geotextile article to prevent a powdered or granular material from escaping from the geotextile during transportation and installation.
Abstract:
Layered phyllosilicates are useful for adsorbing and/or binding to cholesterol and, thereby, reducing blood cholesterol in a patient. Accordingly, provided herein is a method of reducing hypercholesteremia in a mammal comprising administering to said mammal a protonated and at least partially exfoliated layered phyllosilicate material alone and in combination with other cholesterol-reducing agents in an amount effective to reduce hypercholesteremia in said mammal. Also provided are methods of treating a cardiovascular disorder associated with atherosclerosis in a mammalian subject comprising administering to the subject a layered phyllosilicate material in an amount effective to reduce atherosclerotic lesion formation in the subject.
Abstract:
Reactive geocomposite mats, and their method of manufacture, for treating contaminants in sediment, soil or water that allow the passage of essentially non-contaminated water therethrough. The geocomposite mat includes a pre-formed woven or non-woven geotextile, that is needlepunched to an outer geotextile sheet layer to provide a high loft, structurally secured, pre-formed geotextile having a thickness of about 6 mm to about 200 mm, and having, a porosity sufficient to receive a powdered or granular contaminant-reactive material, contaminant-sorptive material, or a contaminant-neutralizing material (hereinafter collectively referred to as “contaminant-reactant material” or “contaminant-reactive material”) throughout its thickness, or in any portion of the thickness across its entire major surface(s). The powdered or granular contaminant-reactive material is disposed within the pores of the previously formed, high loft geotextile mat to surround the fibers, e.g., by vacuum or vibrating the high loft mat while in contact with the contaminant-reactive material to allow the powdered or granular contaminant-reactive material to flow by gravity into the pores of the previously formed, needlepunched geotextile. A liquid-permeable outer geotextile sheet then is secured to the filled geotextile, preferably by heating upwardly extending fibers of the pre-formed geotextile mat to prevent the powdered or granular material from escaping from the geotextile during transportation and installation.