Abstract:
THE INVENTION RELATES TO A SERIES OF NEW GLASSES OF THE LOW CROWN AND LOW FLINT TYPE BUT WITH REFRACTIVE INDICES LOWER THAN THOSE PREVIOUSLY OBTAINABLE AND WITH IMPROVED SPECTRAL TRANSMISSON. THE CRUX OF THE INVENTION PROVIDES FOR THE CONTROLLED INCLUSION OF AN EFFECTIVE AMOUNT OF MERCURY NITRATE IN GLASS BATCH COMPOSITIONS.
Abstract:
An ophthalmic glass lens having a compressively stressed surface zone after ion exchanging which is at least 60 micrometers in depth can be formed from an alkali metal oxide silicate glass comprising by weight about 4 to about 15 percent sodium oxide, about 3 to about 15 percent potassium oxide provided the total amount of sodium, potassium and other alkali metal oxides is up to about 20 percent and about 3 to about 15 percent lanthanum oxide. The ion exchange process can take place at a temperature either above or below the strain point of conventional ophthalmic crown glass to produce satisfactory physical properties in the ophthalmic glass lens.
Abstract:
HIGH STRENGTH OPHTHALMIC LENS An ophthalmic glass lens having a compressivelystressed surface zone after ion exchanging which is at least 120 microns in depth, formed from an alkali metal oxide silicate glass comprising by weight about 4 to about 15 percent sodium oxide and about 3 to about 15 percent potassium oxide. There is a compressivelystressed surface layer having a strength of at least 25,000 psi. The total amount of sodium, potassium and other alkali metal oxides is up to about 20 percent. The total amount of zinc oxide, lanthanum oxide, magnesium oxide, and calcium oxide is about 8 to 15 percent, and these is about 3 to about 15 percent phosphorus pentoxide. An ion exchange process takes place at a temperature either above or below the strain point of conventional ophthalmic crown glass to produce satisfactory physical properties in the ophthalmic glass lens.