Abstract:
An electrical interconnection system with high speed, differential electrical connectors. The connector is assembled from wafers each containing a column of conductive elements, some of which form differential pairs. Skew control is provided for at least some of the pairs by providing a profile on an edge of the shorter signal conductor of the pair. The profile may contain multiple curved segments that effectively lengthen the signal conductor without significantly impacting its impedance. For connectors in which ground conductors are included between adjacent pairs of signal conductors, patterned segments of varying parameters may be included on edges of the signal conductors and ground conductors to equalize electrical lengths of all edges in a set of edges for which there is common mode or differential mode coupling as a signal propagates along each pair. Such features for skew control may be used in combination with other skew control features. The features used may vary depending on the location of the pair within the column.
Abstract:
A two-piece mezzanine connector for high speed, high density signals. The connector is assembled from wafers that may be formed of identical wafer halves. The halves may have interior portions that form a channel in which a lossy member may be captured for selectively configuring the connector for high frequency performance. The lossy member may be serpentine, to both provide different spacing relative to signal and ground conductors and to provide compliance to press against ground conductors when captured between wafer halves. Instead of, or in addition to, the lossy member captured between two wafer halves, the wafer halves may each have lossy material overmolded on at least one side, so that an assembled wafer may have lossy material disposed on the outside. The wafers may have dovetail projections that are secured within dovetail channels, forming structural members of the connector.
Abstract:
A modular electrical connector with broadside coupled signal conductors in a right angle intermediate portion and edge coupled end portions. Broadside coupling provides balanced pairs for very high frequency operation, while edge coupling provides a high density interconnection system at low cost. Each module has separately shielded signal conductor pairs. The shielding is shaped to avoid or suppress undesirable propagation modes within an enclosure formed by shielding per module. Lossy material may be selectively placed within and outside the shielding per module to likewise avoid or suppress unwanted signal propagation.
Abstract:
An electrical interconnection system with high speed, high density electrical connectors. One of the connectors includes a mating contact portion that generates contact force as it is compressed against a wall of the connector housing. The mating contact portion has multiple segments, each with a contact region extending from the wall, such that multiple points of contact to a complementary mating contact portion in a mating connector are provided for mechanical robustness. Additionally, each signal path through the mating interface portions of the connectors can be narrow and has a relatively uniform cross section to provide a uniform impedance. Additional size reduction may be achieved by mounting a ground contact on an exterior surface of a connector housing in alternating rows. Additionally, embodiments in which a wavy contact is used in a cantilevered configuration are also described.
Abstract:
An electrical interconnection system with high speed, differential electrical connectors. The connector is assembled from wafers containing columns of conductive elements, some of which form differential pairs. Each column may include ground conductors adjacent pairs of signal conductors. The ground conductors may be wider than the signal conductors, with ground conductors between adjacent pairs of signal conductors being wider than ground conductors positioned at an end of at least some of the columns. Each of the conductive elements may end in a mating contact portion positioned to engage a complementary contact element in a mating connector. The mating contact portions of the signal conductors in some of the pairs may be rotated relative to the columns. The printed circuit board to which the differential signal connector is mounted may be constructed with elongated antipads around pairs of signal conductors.
Abstract:
An electrical connector that includes a dielectric housing and at least one pair of signal conductors adapted to mate with a printed circuit board. The pair of signal conductors include first and second conductors. The first conductor includes a first mating portion, a first contact portion remote from the first mating portion, and an intermediate portion therebetween. The second conductor includes a second mating portion, a second contact portion remote from the second mating portion, and a second intermediate portion therebetween. Each of the first and second mating portions define a mating portion axis and each of the first and second contact portions define a contact portion axis. The contact portion axes are offset from the mating portion axis.