Abstract:
Embodiments of the present disclosure may provide a charge redistribution DAC with an on-chip reservoir capacitor to provide charges to the DAC in lieu of traditional external reference voltages. The DAC may include the on-chip reservoir capacitor having a first plate and a second plate, an array of DAC capacitors to generate a DAC output, and an array of switches controlled by a DAC input word to couple the DAC capacitors to the reservoir capacitor. The charge redistribution DAC may further comprise a first switch connecting the first plate to an external terminal for a first external reference voltage, and a second switch connecting the second plate to an external terminal for a second external reference voltage. One embodiment may provide an ADC that includes the charge redistribution DAC.
Abstract:
A tracking module that tracks the operation of a digital-to-analog converter (DAC). The DAC tracking module may be included on-chip with a DAC, and be formed with similar circuit components as a DAC. The DAC tracking circuit may output a signal indicating that the DAC within a SAR ADC has settled to an approximate value during each bit conversion. A differential solution is also provided. Power may be optimized because optimal conversion speed may be achieved, and a comparator within the DAC may be turned off or placed in a standby mode at the end of bit conversions, and before the next conversion cycle in response to the signal output by the DAC tracking module.
Abstract:
Embodiments of the present disclosure may provide a charge redistribution DAC with an on-chip reservoir capacitor to provide charges to the DAC in lieu of traditional external reference voltages. The DAC may include the on-chip reservoir capacitor having a first plate and a second plate, an array of DAC capacitors to generate a DAC output, and an array of switches controlled by a DAC input word to couple the DAC capacitors to the reservoir capacitor. The charge redistribution DAC may further comprise a first switch connecting the first plate to an external terminal for a first external reference voltage, and a second switch connecting the second plate to an external terminal for a second external reference voltage. One embodiment may provide an ADC that includes the charge redistribution DAC.
Abstract:
Embodiments of the present disclosure may provide a charge redistribution DAC with two sets of capacitors that provides a DAC output by sharing charges between a plurality of pairs of capacitors in lieu of charging the capacitors using traditional external reference voltages. The charge redistribution DAC may comprise a plurality of pairs of first and second capacitors that each has a first side and a second side, and a group of first switches and a group of second switches. Each first or second switch selectively controls connection of the first side of a respective first or second capacitor to one of a pair of output signal lines according to a DAC input word. The charge redistribution DAC further may comprise a group of bridging switches each connected between second sides of paired first and second capacitors.
Abstract:
A system and method for implementing a differential signaling driver with a common-mode voltage not equal to one half the power supply voltage using voltage-mode techniques. Embodiments of the present invention maintain balanced impedance at the signal output. In an embodiment, a driver may have multiple operating modes for each potential supply voltage or common-mode voltage. In an embodiment, each potential mode may involve configuring the driver by activating or deactivating switches or resistors in the driver and each potential mode may have different resistor values.