Abstract:
A wireless power transmitting device transmits wireless power signals modulated at a given power frequency to a wireless power receiving device using a wireless power transmitting coil. The wireless power receiving device may transmit data signals to the wireless power transmitting device. The wireless power transmitting device may include a data receiver that is coupled to the wireless power transmitting coil and that receives the transmitted data. The data receiver may include an input stage, bandpass filter circuitry, demodulator circuitry, and a data stream combiner. The data receiver may further include a power supply noise cancellation circuit. The power supply noise cancellation circuit may include an input stage, a baseband filter, a window filter, a down-sampler, and a difference filter. The power supply noise cancellation circuit may be coupled to the data stream combiner and is configured to mitigate power supply noise interference in the received data.
Abstract:
A touch sensitive device capable of detecting signals generated by a stylus and correcting the detected stylus signals for effects due to noise present on the device is disclosed. In one example, signals are taken from one or more electrodes that are a predetermined distance away from an electrode in which a stylus signal is detected. The predetermined distance can be empirically determined such that a noise estimate can be generated such that the electrodes have a higher probability of containing only noise that is highly correlated to the noise present on a detected stylus signal. The generated noise estimate is then subtracted from a detected stylus signal to reduce the effect of noise on the stylus signal.
Abstract:
Systems, apparatuses, and methods for performing mid-frame blanking. A first portion of a frame is driven to a display and then a first mid-frame blanking interval is generated. Following this first mid-frame blanking interval, a second portion of the frame is driven to the display, followed by a second mid-frame blanking interval, followed by a third portion of the frame, and so on. Any number of mid-frame blanking intervals may be introduced in a given frame. During each mid-frame blanking interval, touch sensing is performed to detect touch events on the screen for in-cell touch type displays. For displays with touch sensors electrically separated from the display common voltage layer, special sense scan steps are performed during mid-frame blanking intervals. By performing touch sensing or special sense scan steps during a frame rather than only at the end of a frame, the performance of touch sensing is improved.
Abstract:
A touch input device configured to detect stylus signals generated by an external stylus is provided. The touch input device includes a plurality of stylus signal detectors that receive at its input a combination of stylus receive channels that are combined in a manner to minimize noise while at the same time keeping the stylus signal strength uniform independent of the position of the stylus on the device.
Abstract:
Systems, apparatuses, and methods for performing mid-frame blanking. A first portion of a frame is driven to a display and then a first mid-frame blanking interval is generated. Following this first mid-frame blanking interval, a second portion of the frame is driven to the display, followed by a second mid-frame blanking interval, followed by a third portion of the frame, and so on. Any number of mid-frame blanking intervals may be introduced in a given frame. During each mid-frame blanking interval, touch sensing is performed to detect touch events on the screen for in-cell touch type displays. For displays with touch sensors electrically separated from the display common voltage layer, special sense scan steps are performed during mid-frame blanking intervals. By performing touch sensing or special sense scan steps during a frame rather than only at the end of a frame, the performance of touch sensing is improved.