Abstract:
Aspects of the subject technology relate to control circuitry for operating light-emitting diodes (LEDs). The control circuitry may include a pulse-width-modulation (PWM) driver for the LEDs and headroom voltage control circuitry. The PWM driver may adjust a rising edge or a trailing edge of the PWM cycles for various LEDs to ensure a headroom voltage detection window for the headroom voltage control circuitry to sample the headroom voltage of those LEDs without being affected by the rising edge of the PWM cycle for LED or the falling edge of the PWM cycle for another LED.
Abstract:
Aspects of the subject technology relate to control circuitry for light-emitting diodes. The control circuitry includes a two-dimensional light-emitting diode (LED) array. The control circuitry may include a single LED array operable by a common driver or multiple LED arrays each operable by a dedicated LED matrix driver. Each matrix driver may receive a synchronization signal from a common controller and may include a programmable phase lock loop (PLL) to synchronize each matrix driver to the synchronization signal. The LED array may include multiple strings of LEDs mounted in series along the string. Each LED in each string may include a bypass switch operable to modify the current through that LED by pulse-width modulation.
Abstract:
Aspects of the subject technology relate to display circuitry such as backlight control circuitry for operating parallel strings of light-emitting diodes (LEDs). A voltage supply circuit of the backlight control circuitry provides a common supply voltage to the strings of LEDs. Headroom control circuitry samples a residual voltage at the end of each string, determines a minimum of the residual voltages, and provides feedback, based on the determined minimum voltage, to the voltage supply circuit. A headroom control feedback loop may be provided including sampling lines coupled to the second end of each string of LEDs for sampling a residual voltage of each string. Headroom control circuitry may modify the supply voltage based on the minimum residual voltage. Sample-and-hold circuitry may be provided that holds the sampled residual voltages until the voltage supply circuit is ready for an update.
Abstract:
A pixel array may be illuminated with backlight illumination from a backlight. The backlight may include a two-dimensional array of light-emitting diodes, with each light- emitting diode being placed in a respective cell. Different light-emitting diodes may have unique brightness magnitudes based on the content of the given display frame. Driver integrated circuits may control one or more associated light-emitting diodes to have a desired brightness level. The driver integrated circuits may be formed in an active area of the backlight. The driver integrated circuits may be arranged in groups that are daisy chained together. A digital signal (that includes information such as addressing information) may be propagated through the group of driver integrated circuits. To manage thermal performance of the backlight, the backlight may include a thermally conductive layer and/or a heat sink structure. To increase the efficiency of the backlight, the backlight may include one or more reflective layers.
Abstract:
A display may have display layers that form an array of pixels. The array of pixels may be illuminated using a backlight unit. The backlight unit may include multiple strings of light-emitting diodes (LEDs). The multiple LED strings may be controlled by one or more backlight driver integrated circuits (ICs). In a multi-driver IC architecture, an enable signal may be used to set a desired phase delay between the multiple ICs. One or more of the LED strings may exhibit a short fault. Depending on the number of faulty LED strings, the backlight unit can selectively throttle the maximum brightness of the display. The LED strings may receive an output voltage from a DC/DC converter and may be driven using a current driver. The DC/DC converter may be controlled by a headroom feedforward control circuit to ensure sufficient headroom for the current driver while suppressing acoustic noise.
Abstract:
Aspects of the subject technology relate to control circuitry for light-emitting diodes. The control circuitry may operate a light-emitting diode using a multi-peak pulse-width- modulation signal. The control circuitry may include a multi-stage driver having a relatively larger driver stage for providing a direct current through a light-emitting diode and a relatively smaller driver stage configured to cooperate with a pulse-width-modulation controller to pulse-width-modulate a current through the light-emitting diode.
Abstract:
Systems, devices, and methods for a shared matrix 48 of shared row pins 72 and/or column pins 76 between a first array of keys and a second array of lights of a keyboard. A keyboard controller addresses the first array of keys 38 and the second array of lights 62 during a scanning period using the shared row pins 72 and/or column pins 76. Each key 38 is backlit by one or more lights 62 of the second array of lights 62 that may be individually controlled. The keyboard controller 56 may drive the desired lights 62 of a respective row while detecting key presses of the same row during the row interval using the shared row pins 72 and/or column pins 76. In some embodiments, the keyboard controller 56 may drive the desired lights 62 of a row during driving interval of the row interval, and scan the keys 38 of the row separately during a sensing interval of the row interval.