Abstract:
This disclosure relates to a VR glove capable of measuring the movement of individual finger and thumb bones. The VR glove can include a plurality of mertiai measurement units (IMUs) to track the movement of one or more finger and/ or hand sections. The IMUs can include one or more motion sensors, such as a gyroscope and an accelerometer, for measuring the orientation, position, and velocity of objects (e.g., finger bones) that the IMU can be attached. An EVIU can be located proximate to a finger (or thumb) bone and can measure the inertial motion of the corresponding bone. In some examples, the VR glove may include magnetometers to determine the direction of the geo-magnetic field. The VR glove can also include one or more other electronic components, such as a plurality of electrodes for sensing the heading, enabling capacitive touch, and/or contact sensing between finger tips.
Abstract:
Magnetic sensing technology can be used to detect changes, or disturbances (e.g., changes in magnetic field strength), in magnetic fields and can be used to measure the precise location/positioning of an electronic device in proximity to a magnetic source. In order to avoid interference by earth's static magnetic field, a modulated magnetic field can be used for magnetic based proximity sensing. Received modulated magnetic field signals can be demodulated to determine proximity of the sensor to the source of the modulated magnetic field. Devices such as gloves or devices with fingertip nodes based on receiving modulated magnetic fields can be used to detect user hand position.
Abstract:
Multi-touch touch-sensing devices and methods are described herein. The touch sensing devices can include multiple sense points, each located at a crossing of a drive line and a sense line. In some embodiments, multiple drive lines may be simultaneously or nearly simultaneously stimulated with drive signals having unique characteristics, such as phase or frequency. A sense signal can occur on each sense line that can be related to the drive signals by an amount of touch present at sense points corresponding to the stimulated drive lines and the sense line. By using processing techniques based on the unique drive signals, an amount of touch corresponding to each sense point can be extracted from the sense signal.; The touch sensing methods and devices can be incorporated into interfaces for a variety of electronic devices such as a desktop, tablet, notebook, and handheld computers, personal digital assistants, media players, and mobile telephones.
Abstract:
Multi-touch touch-sensing devices and methods are described herein. The touch sensing devices can include multiple sense points, each located at a crossing of a drive line and a sense line. In some embodiments, multiple drive lines may be simultaneously or nearly simultaneously stimulated with drive signals having unique characteristics, such as phase or frequency. A sense signal can occur on each sense line that can be related to the drive signals by an amount of touch present at sense points corresponding to the stimulated drive lines and the sense line. By using processing techniques based on the unique drive signals, an amount of touch corresponding to each sense point can be extracted from the sense signal.; The touch sensing methods and devices can be incorporated into interfaces for a variety of electronic devices such as a desktop, tablet, notebook, and handheld computers, personal digital assistants, media players, and mobile telephones.
Abstract:
Disclosed herein are liquid-crystal display (LCD) touch screens that integrate the touch sensing elements with the display circuitry. The integration may take a variety of forms. Touch sensing elements can be completely implemented within the LCD stackup but outside the not between the color filter plate and the array plate. Alternatively, some touch sensing elements can be between the color filter and array plates with other touch sensing elements not between the plates. In another alternative, all touch sensing elements can be between the color filter and array plates. The latter alternative can include both conventional and in-plane-switching (IPS) LCDs. In some forms, one or more display structures can also have a touch sensing function. Techniques for manufacturing and operating such displays, as well as various devices embodying such displays are also disclosed.
Abstract:
Disclosed herein are liquid-crystal display (LCD) touch screens that integrate the touch sensing elements with the display circuitry. The touch elements comprise individually addressable touch pixels. Each touch pixel includes a drive electrode (7102), a sense electrode (7103) and corresponding drive lines (7104) and sense lines (7105) that are individually routed and connected to a bus on the border of the display.
Abstract:
Multi-touch touch-sensing devices and methods are described herein. The touch sensing devices can include multiple sense points, each located at a crossing of a drive line and a sense line. In some embodiments, multiple drive lines may be simultaneously or nearly simultaneously stimulated with drive signals having unique characteristics, such as phase or frequency. A sense signal can occur on each sense line that can be related to the drive signals by an amount of touch present at sense points corresponding to the stimulated drive lines and the sense line. By using processing techniques based on the unique drive signals, an amount of touch corresponding to each sense point can be extracted from the sense signal.; The touch sensing methods and devices can be incorporated into interfaces for a variety of electronic devices such as a desktop, tablet, notebook, and handheld computers, personal digital assistants, media players, and mobile telephones.